Cargando…
A deep ensemble model to predict miRNA-disease association
Cumulative evidence from biological experiments has confirmed that microRNAs (miRNAs) are related to many types of human diseases through different biological processes. It is anticipated that precise miRNA-disease association prediction could not only help infer potential disease-related miRNA but...
Autores principales: | Fu, Laiyi, Peng, Qinke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5670180/ https://www.ncbi.nlm.nih.gov/pubmed/29101378 http://dx.doi.org/10.1038/s41598-017-15235-6 |
Ejemplares similares
-
UFold: fast and accurate RNA secondary structure prediction with deep learning
por: Fu, Laiyi, et al.
Publicado: (2021) -
Ensemble of decision tree reveals potential miRNA-disease associations
por: Chen, Xing, et al.
Publicado: (2019) -
An Optimized Ensemble Deep Learning Model for Predicting Plant miRNA–IncRNA Based on Artificial Gorilla Troops Algorithm
por: Hamdy, Walid, et al.
Publicado: (2023) -
miREE: miRNA recognition elements ensemble
por: Reyes-Herrera, Paula H, et al.
Publicado: (2011) -
Ensemble Methods for MiRNA Target Prediction from Expression Data
por: Le, Thuc Duy, et al.
Publicado: (2015)