Cargando…
Touching Soma Segmentation Based on the Rayburst Sampling Algorithm
Neuronal soma segmentation is essential for morphology quantification analysis. Rapid advances in light microscope imaging techniques have generated such massive amounts of data that time-consuming manual methods cannot meet requirements for high throughput. However, touching soma segmentation is st...
Autores principales: | Hu, Tianyu, Xu, Qiufeng, Lv, Wei, Liu, Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671566/ https://www.ncbi.nlm.nih.gov/pubmed/28940176 http://dx.doi.org/10.1007/s12021-017-9336-y |
Ejemplares similares
-
Rapid Reconstruction of 3D Neuronal Morphology from Light Microscopy Images with Augmented Rayburst Sampling
por: Ming, Xing, et al.
Publicado: (2013) -
Accurate Neuronal Soma Segmentation Using 3D Multi-Task Learning U-Shaped Fully Convolutional Neural Networks
por: Hu, Tianyu, et al.
Publicado: (2021) -
Large-scale localization of touching somas from 3D images using density-peak clustering
por: Cheng, Shenghua, et al.
Publicado: (2016) -
Reconstructing Soma–Soma Synapse-like Vesicular
Exocytosis with DNA Origami
por: Liu, Jiangbo, et al.
Publicado: (2021) -
Soma Crisis
por: Johnson, Nora
Publicado: (2015)