Cargando…
Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising
The purpose of the present study is to investigate whether the effectiveness of a new ad on digital channels (YouTube) can be predicted by using neural networks and neuroscience-based metrics (brain response, heart rate variability and eye tracking). Neurophysiological records from 35 participants w...
Autores principales: | Guixeres, Jaime, Bigné, Enrique, Ausín Azofra, Jose M., Alcañiz Raya, Mariano, Colomer Granero, Adrián, Fuentes Hurtado, Félix, Naranjo Ornedo, Valery |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671759/ https://www.ncbi.nlm.nih.gov/pubmed/29163251 http://dx.doi.org/10.3389/fpsyg.2017.01808 |
Ejemplares similares
-
A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents
por: Colomer Granero, Adrián, et al.
Publicado: (2016) -
Do You See What I See? Effectiveness of 360-Degree vs. 2D Video Ads Using a Neuroscience Approach
por: Ausin-Azofra, Jose M., et al.
Publicado: (2021) -
Virtual Reality in Marketing: A Framework, Review, and Research Agenda
por: Alcañiz, Mariano, et al.
Publicado: (2019) -
Recognizing Personality Traits Using Consumer Behavior Patterns in a Virtual Retail Store
por: Khatri, Jaikishan, et al.
Publicado: (2022) -
Automatic classification of human facial features based on their appearance
por: Fuentes-Hurtado, Felix, et al.
Publicado: (2019)