Cargando…
Modeling Uncertainties in EEG Microstates: Analysis of Real and Imagined Motor Movements Using Probabilistic Clustering-Driven Training of Probabilistic Neural Networks
Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analy...
Autores principales: | Dinov, Martin, Leech, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671986/ https://www.ncbi.nlm.nih.gov/pubmed/29163110 http://dx.doi.org/10.3389/fnhum.2017.00534 |
Ejemplares similares
-
Uncertainty in Risk Assessment: The Representation and Treatment of Uncertainties by Probabilistic and Non-Probabilistic Methods
por: Flage, Roger
Publicado: (2014) -
Probabilistic numerics and uncertainty in computations
por: Hennig, Philipp, et al.
Publicado: (2015) -
Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback
por: Orhan, A. Emin, et al.
Publicado: (2017) -
Probabilistic strain optimization under constraint uncertainty
por: Yousofshahi, Mona, et al.
Publicado: (2013) -
Calculation and Analysis of Microstate Related to Variation in Executed and Imagined Movement of Force of Hand Clenching
por: Fu, Yunfa, et al.
Publicado: (2018)