Cargando…
Consensus Kernel K-Means Clustering for Incomplete Multiview Data
Multiview clustering aims to improve clustering performance through optimal integration of information from multiple views. Though demonstrating promising performance in various applications, existing multiview clustering algorithms cannot effectively handle the view's incompleteness. Recently,...
Autores principales: | Ye, Yongkai, Liu, Xinwang, Liu, Qiang, Yin, Jianping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672121/ https://www.ncbi.nlm.nih.gov/pubmed/29312448 http://dx.doi.org/10.1155/2017/3961718 |
Ejemplares similares
-
Incomplete Multiview Clustering via Late Fusion
por: Ye, Yongkai, et al.
Publicado: (2018) -
Kernel Probabilistic K-Means Clustering
por: Liu, Bowen, et al.
Publicado: (2021) -
Kernelized multiview signed graph learning for single-cell RNA sequencing data
por: Karaaslanli, Abdullah, et al.
Publicado: (2023) -
A Belief Two-Level Weighted Clustering Method for Incomplete Pattern Based on Multiview Fusion
por: Ma, Zong-fang, et al.
Publicado: (2022) -
V [Formula: see text] H: View Variation and View Heredity for Incomplete Multiview Clustering
Publicado: (2021)