Cargando…

Assessing single-stranded oligonucleotide drug-induced effects in vitro reveals key risk factors for thrombocytopenia

Single-stranded oligonucleotides (ON) comprise a promising therapeutic platform that enables selective modulation of currently undruggable targets. The development of novel ON drug candidates has demonstrated excellent efficacy, but in certain cases also some safety liabilities were reported. Among...

Descripción completa

Detalles Bibliográficos
Autores principales: Sewing, Sabine, Roth, Adrian B., Winter, Michael, Dieckmann, Andreas, Bertinetti-Lapatki, Cristina, Tessier, Yann, McGinnis, Claudia, Huber, Sylwia, Koller, Erich, Ploix, Corinne, Reed, John C., Singer, Thomas, Rothfuss, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673186/
https://www.ncbi.nlm.nih.gov/pubmed/29107969
http://dx.doi.org/10.1371/journal.pone.0187574
Descripción
Sumario:Single-stranded oligonucleotides (ON) comprise a promising therapeutic platform that enables selective modulation of currently undruggable targets. The development of novel ON drug candidates has demonstrated excellent efficacy, but in certain cases also some safety liabilities were reported. Among them are events of thrombocytopenia, which have recently been evident in late stage trials with ON drugs. The underlying mechanisms are poorly understood and the risk for ON candidates causing such events cannot be sufficiently assessed pre-clinically. We investigated potential thrombocytopenia risk factors of ONs and implemented a set of in vitro assays to assess these risks. Our findings support previous observations that phosphorothioate (PS)-ONs can bind to platelet proteins such as platelet collagen receptor glycoprotein VI (GPVI) and activate human platelets in vitro to various extents. We also show that these PS-ONs can bind to platelet factor 4 (PF4). Binding to platelet proteins and subsequent activation correlates with ON length and connected to this, the number of PS in the backbone of the molecule. Moreover, we demonstrate that locked nucleic acid (LNA) ribosyl modifications in the wings of the PS-ONs strongly suppress binding to GPVI and PF4, paralleled by markedly reduced platelet activation. In addition, we provide evidence that PS-ONs do not directly affect hematopoietic cell differentiation in culture but at higher concentrations show a pro-inflammatory potential, which might contribute to platelet activation. Overall, our data confirm that certain molecular attributes of ONs are associated with a higher risk for thrombocytopenia. We propose that applying the in vitro assays discussed here during the lead optimization phase may aid in deprioritizing ONs with a potential to induce thrombocytopenia.