Cargando…
Organotypic brain explant culture as a drug evaluation system for malignant brain tumors
Therapeutic options for malignant brain tumors are limited, with new drugs being continuously evaluated. Organotypic brain slice culture has been adopted for neuroscience studies as a system that preserves brain architecture, cellular function, and the vascular network. However, the suitability of b...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673912/ https://www.ncbi.nlm.nih.gov/pubmed/28980419 http://dx.doi.org/10.1002/cam4.1174 |
_version_ | 1783276663373561856 |
---|---|
author | Minami, Noriaki Maeda, Yusuke Shibao, Shunsuke Arima, Yoshimi Ohka, Fumiharu Kondo, Yutaka Maruyama, Koji Kusuhara, Masatoshi Sasayama, Takashi Kohmura, Eiji Saya, Hideyuki Sampetrean, Oltea |
author_facet | Minami, Noriaki Maeda, Yusuke Shibao, Shunsuke Arima, Yoshimi Ohka, Fumiharu Kondo, Yutaka Maruyama, Koji Kusuhara, Masatoshi Sasayama, Takashi Kohmura, Eiji Saya, Hideyuki Sampetrean, Oltea |
author_sort | Minami, Noriaki |
collection | PubMed |
description | Therapeutic options for malignant brain tumors are limited, with new drugs being continuously evaluated. Organotypic brain slice culture has been adopted for neuroscience studies as a system that preserves brain architecture, cellular function, and the vascular network. However, the suitability of brain explants for anticancer drug evaluation has been unclear. We here adopted a mouse model of malignant glioma based on expression of H‐Ras(V12) in Ink4a/Arf (−/−) neural stem/progenitor cells to establish tumor‐bearing brain explants from adult mice. We treated the slices with cisplatin, temozolomide, paclitaxel, or tranilast and investigated the minimal assays required to assess drug effects. Serial fluorescence‐based tumor imaging was sufficient for evaluation of cisplatin, a drug with a pronounced cytotoxic action, whereas immunostaining of cleaved caspase 3 (a marker of apoptosis) and of Ki67 (a marker of cell proliferation) was necessary for the assessment of temozolomide action and immunostaining for phosphorylated histone H3 (a marker of mitosis) allowed visualization of paclitaxel‐specific effects. Staining for cleaved caspase 3 was also informative in the assessment of drug toxicity for normal brain tissue. Incubation of explants with fluorescently labeled antibodies to CD31 allowed real‐time imaging of the microvascular network and complemented time‐lapse imaging of tumor cell invasion into surrounding tissue. Our results suggest that a combination of fluorescence imaging and immunohistological staining allows a unified assessment of the effects of various classes of drug on the survival, proliferation, and invasion of glioma cells, and that organotypic brain slice culture is therefore a useful tool for evaluation of antiglioma drugs. |
format | Online Article Text |
id | pubmed-5673912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56739122017-11-15 Organotypic brain explant culture as a drug evaluation system for malignant brain tumors Minami, Noriaki Maeda, Yusuke Shibao, Shunsuke Arima, Yoshimi Ohka, Fumiharu Kondo, Yutaka Maruyama, Koji Kusuhara, Masatoshi Sasayama, Takashi Kohmura, Eiji Saya, Hideyuki Sampetrean, Oltea Cancer Med Cancer Biology Therapeutic options for malignant brain tumors are limited, with new drugs being continuously evaluated. Organotypic brain slice culture has been adopted for neuroscience studies as a system that preserves brain architecture, cellular function, and the vascular network. However, the suitability of brain explants for anticancer drug evaluation has been unclear. We here adopted a mouse model of malignant glioma based on expression of H‐Ras(V12) in Ink4a/Arf (−/−) neural stem/progenitor cells to establish tumor‐bearing brain explants from adult mice. We treated the slices with cisplatin, temozolomide, paclitaxel, or tranilast and investigated the minimal assays required to assess drug effects. Serial fluorescence‐based tumor imaging was sufficient for evaluation of cisplatin, a drug with a pronounced cytotoxic action, whereas immunostaining of cleaved caspase 3 (a marker of apoptosis) and of Ki67 (a marker of cell proliferation) was necessary for the assessment of temozolomide action and immunostaining for phosphorylated histone H3 (a marker of mitosis) allowed visualization of paclitaxel‐specific effects. Staining for cleaved caspase 3 was also informative in the assessment of drug toxicity for normal brain tissue. Incubation of explants with fluorescently labeled antibodies to CD31 allowed real‐time imaging of the microvascular network and complemented time‐lapse imaging of tumor cell invasion into surrounding tissue. Our results suggest that a combination of fluorescence imaging and immunohistological staining allows a unified assessment of the effects of various classes of drug on the survival, proliferation, and invasion of glioma cells, and that organotypic brain slice culture is therefore a useful tool for evaluation of antiglioma drugs. John Wiley and Sons Inc. 2017-10-04 /pmc/articles/PMC5673912/ /pubmed/28980419 http://dx.doi.org/10.1002/cam4.1174 Text en © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Cancer Biology Minami, Noriaki Maeda, Yusuke Shibao, Shunsuke Arima, Yoshimi Ohka, Fumiharu Kondo, Yutaka Maruyama, Koji Kusuhara, Masatoshi Sasayama, Takashi Kohmura, Eiji Saya, Hideyuki Sampetrean, Oltea Organotypic brain explant culture as a drug evaluation system for malignant brain tumors |
title | Organotypic brain explant culture as a drug evaluation system for malignant brain tumors |
title_full | Organotypic brain explant culture as a drug evaluation system for malignant brain tumors |
title_fullStr | Organotypic brain explant culture as a drug evaluation system for malignant brain tumors |
title_full_unstemmed | Organotypic brain explant culture as a drug evaluation system for malignant brain tumors |
title_short | Organotypic brain explant culture as a drug evaluation system for malignant brain tumors |
title_sort | organotypic brain explant culture as a drug evaluation system for malignant brain tumors |
topic | Cancer Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673912/ https://www.ncbi.nlm.nih.gov/pubmed/28980419 http://dx.doi.org/10.1002/cam4.1174 |
work_keys_str_mv | AT minaminoriaki organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT maedayusuke organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT shibaoshunsuke organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT arimayoshimi organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT ohkafumiharu organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT kondoyutaka organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT maruyamakoji organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT kusuharamasatoshi organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT sasayamatakashi organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT kohmuraeiji organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT sayahideyuki organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors AT sampetreanoltea organotypicbrainexplantcultureasadrugevaluationsystemformalignantbraintumors |