Cargando…

A robust single-beam optical trap for a gram-scale mechanical oscillator

Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over...

Descripción completa

Detalles Bibliográficos
Autores principales: Altin, P. A., Nguyen, T. T.-H., Slagmolen, B. J. J., Ward, R. L., Shaddock, D. A., McClelland, D. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673969/
https://www.ncbi.nlm.nih.gov/pubmed/29109531
http://dx.doi.org/10.1038/s41598-017-15179-x
_version_ 1783276677083693056
author Altin, P. A.
Nguyen, T. T.-H.
Slagmolen, B. J. J.
Ward, R. L.
Shaddock, D. A.
McClelland, D. E.
author_facet Altin, P. A.
Nguyen, T. T.-H.
Slagmolen, B. J. J.
Ward, R. L.
Shaddock, D. A.
McClelland, D. E.
author_sort Altin, P. A.
collection PubMed
description Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure – so-called ‘optical springs’ – are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments.
format Online
Article
Text
id pubmed-5673969
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56739692017-11-15 A robust single-beam optical trap for a gram-scale mechanical oscillator Altin, P. A. Nguyen, T. T.-H. Slagmolen, B. J. J. Ward, R. L. Shaddock, D. A. McClelland, D. E. Sci Rep Article Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure – so-called ‘optical springs’ – are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments. Nature Publishing Group UK 2017-11-06 /pmc/articles/PMC5673969/ /pubmed/29109531 http://dx.doi.org/10.1038/s41598-017-15179-x Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Altin, P. A.
Nguyen, T. T.-H.
Slagmolen, B. J. J.
Ward, R. L.
Shaddock, D. A.
McClelland, D. E.
A robust single-beam optical trap for a gram-scale mechanical oscillator
title A robust single-beam optical trap for a gram-scale mechanical oscillator
title_full A robust single-beam optical trap for a gram-scale mechanical oscillator
title_fullStr A robust single-beam optical trap for a gram-scale mechanical oscillator
title_full_unstemmed A robust single-beam optical trap for a gram-scale mechanical oscillator
title_short A robust single-beam optical trap for a gram-scale mechanical oscillator
title_sort robust single-beam optical trap for a gram-scale mechanical oscillator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673969/
https://www.ncbi.nlm.nih.gov/pubmed/29109531
http://dx.doi.org/10.1038/s41598-017-15179-x
work_keys_str_mv AT altinpa arobustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT nguyentth arobustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT slagmolenbjj arobustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT wardrl arobustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT shaddockda arobustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT mcclellandde arobustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT altinpa robustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT nguyentth robustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT slagmolenbjj robustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT wardrl robustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT shaddockda robustsinglebeamopticaltrapforagramscalemechanicaloscillator
AT mcclellandde robustsinglebeamopticaltrapforagramscalemechanicaloscillator