Cargando…
Molecular-trapping in Emulsion’s Monolayer: A New Strategy for Production and Purification of Bioactive Saponins
Saponins from defatted root-extract of Securidaca longipedunculata were systematically entrapped in emulsion monolayer-barrier and finally recovered in pure form through demulsification. First, their molecules were dispersed in water to engineer a monomolecular film architecture, via self-assembly....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5674058/ https://www.ncbi.nlm.nih.gov/pubmed/29109460 http://dx.doi.org/10.1038/s41598-017-15067-4 |
Sumario: | Saponins from defatted root-extract of Securidaca longipedunculata were systematically entrapped in emulsion monolayer-barrier and finally recovered in pure form through demulsification. First, their molecules were dispersed in water to engineer a monomolecular film architecture, via self-assembly. Emulsifying with ethyl-ether resulted in swollen micelles and engendered phase-inversion and phase-separation, by disrupting the thermodynamic equilibrium. As positive outcome, a Winsor II system was obtained, having saponin-rich upper phase (ethyl-ether) and impurities bound lower phase (aqueous). Saponin particles underwent transition in insoluble ethyl-ether, precipitated and recovered as solids. The entire process was bioactivity-guided and validated using pooled fractions of securidaca saponins, purified by TLC (RP-C18, F(254)S). TEM and SEM revealed interesting morphologies and particle sizes between nanometer and micron. At the end, purity output of 90% and total recovery of 94% were achieved. Here we show that “molecular-trapping in emulsion’s monolayer” is an effective method for recovery, production and purification of saponins of plant origin. |
---|