Cargando…

Austromonticola, a new genus of broad-nosed weevil (Coleoptera, Curculionidae, Entiminae) from montane areas of New Zealand

Abstract. Austromonticola gen. n. is proposed for a group of eight New Zealand alpine broad-nosed weevil species, all of which are here described: A. atriarius sp. n. (type locality: Umbrella Mountains, Central Otago), A. caelibatus sp. n. (type locality: Ohau Range, Mackenzie), A. furcatus sp. n. (...

Descripción completa

Detalles Bibliográficos
Autor principal: Brown, Samuel D. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pensoft Publishers 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5674147/
https://www.ncbi.nlm.nih.gov/pubmed/29118629
http://dx.doi.org/10.3897/zookeys.707.12649
Descripción
Sumario:Abstract. Austromonticola gen. n. is proposed for a group of eight New Zealand alpine broad-nosed weevil species, all of which are here described: A. atriarius sp. n. (type locality: Umbrella Mountains, Central Otago), A. caelibatus sp. n. (type locality: Ohau Range, Mackenzie), A. furcatus sp. n. (type locality: Old Man Range, Central Otago), A. inflatus sp. n. (type locality: Hawkdun Range, Central Otago), A. planulatus sp. n. (type locality: St Marys Range, Central Otago), A. postinventus sp. n. (type locality: Kirkliston Range, South Canterbury), A. mataura sp. n. (type locality: Mt Dick, Otago Lakes) and A. rotundus sp. n. (type locality: Old Man Range, Central Otago). All species occur exclusively above 1000 m elevation in the mountains of Central Otago and South Canterbury in the South Island. A phylogeny of the genus, including six outgroups, was inferred from 33 morphological characters. It resolved the genus as monophyletic, and revealed two strongly supported clades within Austromonticola. DNA sequences of four gene regions were obtained from five species. Of these, the 3' end of COI proved to be the most suitable for the identification of specimens. Females of all species have diagnostic secondary sexual structures on the elytra and ventrites. These structures are hypothesised to have evolved to assist with oviposition in and beside cushion plants or by selection for structures to mitigate the costs to females of prolonged mating.