Cargando…

Modelling of cerebral tuberculosis in BALB/c mice using clinical strain from patients with CNS tuberculosis infection

BACKGROUND & OBJECTIVES: Central nervous system (CNS) infection caused by Mycobacterium tuberculosis (MTB) is the most severe form of extrapulmonary tuberculosis (EPTB) due to a high level of mortality and morbidity. Limited studies are available on CNS-TB animal model development. The present s...

Descripción completa

Detalles Bibliográficos
Autores principales: Husain, Aliabbas A., Gupta, Umesh Datta, Gupta, Pushpa, Nayak, Amit R., Chandak, Nitin H., Daginawla, Hatim F., Singh, Lokendra, Kashyap, Rajpal Singh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5674554/
https://www.ncbi.nlm.nih.gov/pubmed/29067986
http://dx.doi.org/10.4103/ijmr.IJMR_1930_15
Descripción
Sumario:BACKGROUND & OBJECTIVES: Central nervous system (CNS) infection caused by Mycobacterium tuberculosis (MTB) is the most severe form of extrapulmonary tuberculosis (EPTB) due to a high level of mortality and morbidity. Limited studies are available on CNS-TB animal model development. The present study describes the development of a murine model of CNS-TB using a clinical strain (C3) isolated from the cerebrospinal fluid (CSF) of CNS-TB patients. METHODS: Groups of mice were infected by the intravenous route with MTB C3 strain isolated from the CSF of CNS-TB patients. Brain and lung tissue were evaluated for bacterial burden, histopathology and surrogate markers of TB infection at 30 and 50 days post-infection. RESULTS: Mice infected intravenously with MTB C3 strains showed progressive development of CNS disease with high bacillary burden in lungs at the initial stage (30 days), which eventually disseminated to the brain at a later stage (50 days). Similarly, high mortality (60%) was associated in mice infected with C3 strain compared to control. INTERPRETATION & CONCLUSIONS: The study showed development of a novel murine model of CNS-TB using the C3 strain of MTB that replicated events of extrapulmonary dissemination. The developed model would be helpful in understanding the pathogenesis of CNS-TB infection for the development of improved therapeutic interventions in future.