Cargando…

Myxinidin2 and myxinidin3 suppress inflammatory responses through STAT3 and MAPKs to promote wound healing

Skin wounds are continuously exposed to bacteria and can easily become infected. Infected wounds require antibiotic treatment, and infections caused by drug-resistant bacteria are an important public health problem. Antimicrobial peptides have broad-spectrum antibacterial activity, induce little or...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Hyo Mi, Ko, Sujin, Cheong, Min-Ju, Bang, Jeong Kyu, Seo, Chang Ho, Luchian, Tudor, Park, Yoonkyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675655/
https://www.ncbi.nlm.nih.gov/pubmed/29152103
http://dx.doi.org/10.18632/oncotarget.20908
Descripción
Sumario:Skin wounds are continuously exposed to bacteria and can easily become infected. Infected wounds require antibiotic treatment, and infections caused by drug-resistant bacteria are an important public health problem. Antimicrobial peptides have broad-spectrum antibacterial activity, induce little or no drug resistance and may be suitable for treating skin infections caused by drug-resistant bacteria. We previously reported the design and function of myxinidin and myxinidin analogues. Here we showed that myxinidin2 and myxinidin3 exhibit antimicrobial and anti-biofilm activities against antibiotic-resistant Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa in high salt environments and in gelatin. Moreover, these peptides facilitated infected wound healing by decreasing inflammation through suppression of IL-6, IL-8, and TNF-α and regulation of downstream mediators such as STAT3, p38, JNK, and EGFR. In a mouse skin wound model infected with antibiotic-resistant bacteria, myxinidin2 and myxinidin3 eliminated the infection and enhanced wound healing. We therefore propose the use of these peptides for treating infected wounds and burns.