Cargando…

An Albumin-Oligonucleotide Assembly for Potential Combinatorial Drug Delivery and Half-Life Extension Applications

The long blood circulatory property of human serum albumin, due to engagement with the cellular recycling neonatal Fc receptor (FcRn), is an attractive drug half-life extension enabling technology. This work describes a novel site-specific albumin double-stranded (ds) DNA assembly approach, in which...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuhlmann, Matthias, Hamming, Jonas B.R., Voldum, Anders, Tsakiridou, Georgia, Larsen, Maja T., Schmøkel, Julie S., Sohn, Emil, Bienk, Konrad, Schaffert, David, Sørensen, Esben S., Wengel, Jesper, Dupont, Daniel M., Howard, Kenneth A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676087/
https://www.ncbi.nlm.nih.gov/pubmed/29246307
http://dx.doi.org/10.1016/j.omtn.2017.10.004
Descripción
Sumario:The long blood circulatory property of human serum albumin, due to engagement with the cellular recycling neonatal Fc receptor (FcRn), is an attractive drug half-life extension enabling technology. This work describes a novel site-specific albumin double-stranded (ds) DNA assembly approach, in which the 3′ or 5′ end maleimide-derivatized oligodeoxynucleotides are conjugated to albumin cysteine at position 34 (cys34) and annealed with complementary strands to allow single site-specific protein modification with functionalized ds oligodeoxynucleotides. Electrophoretic gel shift assays demonstrated successful annealing of complementary strands bearing Atto488, 6-carboxyfluorescein (6-FAM), or a factor IXa aptamer to the albumin-oligodeoxynucleotide conjugate. A fluorometric factor IXa activity assay showed retained aptamer inhibitory activity upon assembly with the albumin and completely blocked factor IXa at a concentration of 100 nM for 2 hr. The assembled construct exhibited stability in serum-containing buffer and FcRn engagement that could be increased using an albumin variant engineered for higher FcRn affinity. This work presents a novel albumin-oligodeoxynucleotide assembly technology platform that offers potential combinatorial drug delivery and half-life extension applications.