Cargando…

Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator

Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the travel...

Descripción completa

Detalles Bibliográficos
Autores principales: Hussain, Abid, Muhammad, Yousaf Shad, Nauman Sajid, M., Hussain, Ijaz, Mohamd Shoukry, Alaa, Gani, Showkat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676484/
https://www.ncbi.nlm.nih.gov/pubmed/29209364
http://dx.doi.org/10.1155/2017/7430125
Descripción
Sumario:Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.