Cargando…
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the travel...
Autores principales: | Hussain, Abid, Muhammad, Yousaf Shad, Nauman Sajid, M., Hussain, Ijaz, Mohamd Shoukry, Alaa, Gani, Showkat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676484/ https://www.ncbi.nlm.nih.gov/pubmed/29209364 http://dx.doi.org/10.1155/2017/7430125 |
Ejemplares similares
-
Multivariate Multi-Objective Allocation in Stratified Random Sampling: A Game Theoretic Approach
por: Muhammad, Yousaf Shad, et al.
Publicado: (2016) -
The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm
por: Ahmed, Zakir Hussain
Publicado: (2014) -
Solving the clustered traveling salesman problem via traveling salesman problem methods
por: Lu, Yongliang, et al.
Publicado: (2022) -
An Adaptive Evolutionary Algorithm for Traveling Salesman Problem with Precedence Constraints
por: Sung, Jinmo, et al.
Publicado: (2014) -
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
por: Zhan, Shi-hua, et al.
Publicado: (2016)