Cargando…
Real-Valued 2D MUSIC Algorithm Based on Modified Forward/Backward Averaging Using an Arbitrary Centrosymmetric Polarization Sensitive Array
Two-dimensional multiple signal classification (MUSIC) algorithm based on polarization sensitive array (PSA) has excellent performance. However, it suffers a high computational complexity due to a multitude of complex operations. In this paper, we propose a real-valued two-dimensional MUSIC algorith...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676623/ https://www.ncbi.nlm.nih.gov/pubmed/28961205 http://dx.doi.org/10.3390/s17102241 |
Sumario: | Two-dimensional multiple signal classification (MUSIC) algorithm based on polarization sensitive array (PSA) has excellent performance. However, it suffers a high computational complexity due to a multitude of complex operations. In this paper, we propose a real-valued two-dimensional MUSIC algorithm based on conjugate centrosymmetric signal model, which is applicable to arbitrary centrosymmetric polarization sensitive array. The modified forward/backward averaging, which can be applied to the PSA, is presented. Hence, the eigen-decomposition analysis process and spectrum function computation are converted into real domain, prominently reducing the computational complexity. Then, the direction-of-arrival (DOA) estimation is decoupled from the polarization parameter estimation so that the four-dimensional spectral peak search process is avoided. The theoretical computational complexity is discussed and the Cramer-Rao bound (CRB) of DOA estimation is derived in this paper. The simulation results indicate that the proposed algorithm achieves superior accuracy in DOA estimation and has low computational complexity. |
---|