Cargando…
Giant Slip Induced Anomalous Dewetting of an Ultrathin Film on a Viscous Sublayer
A ‘giant’ slip dynamics was engineered to a highly confined interface of a dewetting polymethylmethacrylate (PMMA) ultrathin film by introducing a lubricating viscous polystyrene (PS) sublayer. The crossover of regimes from no-slip to giant-slip was engendered by tuning the viscosity and thickness o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676695/ https://www.ncbi.nlm.nih.gov/pubmed/29116103 http://dx.doi.org/10.1038/s41598-017-14861-4 |
Sumario: | A ‘giant’ slip dynamics was engineered to a highly confined interface of a dewetting polymethylmethacrylate (PMMA) ultrathin film by introducing a lubricating viscous polystyrene (PS) sublayer. The crossover of regimes from no-slip to giant-slip was engendered by tuning the viscosity and thickness of the sublayer. A long-range hole-rim interaction with increase in slippage on the PMMA-PS interface transformed the circular holes on the PMMA surface into the noncircular faceted ones. The extent of the slippage and the transition of the length scales from slip-dominated to no-slip regime were evaluated using a general linear stability analysis. The proposed formulation provided an analytical tool to evaluate the slippage effective at the soft and deformable liquid-liquid interfaces. |
---|