Cargando…

Towards Harmonious Coexistence in the Unlicensed Spectrum: Rational Cooperation of Operators

5G New Radio (NR) operating in the unlicensed spectrum is accelerating the Fourth Industrial Revolution by supporting Internet of Things (IoT) networks or Industrial IoT deployments. Specifically, LTE-Advanced (LTE-A) is looking to achieve spectrum integration through coexistence with multi-radio ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Bae, Sunghwan, Kim, Hongseok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676699/
https://www.ncbi.nlm.nih.gov/pubmed/29064434
http://dx.doi.org/10.3390/s17102432
Descripción
Sumario:5G New Radio (NR) operating in the unlicensed spectrum is accelerating the Fourth Industrial Revolution by supporting Internet of Things (IoT) networks or Industrial IoT deployments. Specifically, LTE-Advanced (LTE-A) is looking to achieve spectrum integration through coexistence with multi-radio access technology (RAT) systems in the same unlicensed bands with both licensed-assisted and stand-alone access. The listen-before-talk (LBT) mechanism is mainly considered to enable an LTE operator to protect other incumbent unlicensed systems. In this article, we investigate the behaviors of multiple LTE operators along with the deployment of WiFi networks in the unlicensed spectrum from both short- and long-term points of view. In countries without mandatory LBT requirements, we show that an LTE operator is susceptible to collusion with another LTE operator, thus exploiting scarce spectrum resources by deceiving other wireless networks into thinking that channels are always busy; hence, mandatory usage of LTE with LBT is highly recommended at national level to achieve harmonious coexistence in the unlicensed spectrum. We discuss several possible coexistence scenarios to resolve the operator’s dilemmaas well as to improve unlicensed spectrum efficiency among multi-RAT systems, which is viable in the near future.