Cargando…
Smart Annotation of Cyclic Data Using Hierarchical Hidden Markov Models
Cyclic signals are an intrinsic part of daily life, such as human motion and heart activity. The detailed analysis of them is important for clinical applications such as pathological gait analysis and for sports applications such as performance analysis. Labeled training data for algorithms that ana...
Autores principales: | Martindale, Christine F., Hoenig, Florian, Strohrmann, Christina, Eskofier, Bjoern M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676753/ https://www.ncbi.nlm.nih.gov/pubmed/29027973 http://dx.doi.org/10.3390/s17102328 |
Ejemplares similares
-
Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables †
por: Martindale, Christine F., et al.
Publicado: (2019) -
Multi-scale chromatin state annotation using a hierarchical hidden Markov model
por: Marco, Eugenio, et al.
Publicado: (2017) -
Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson’s disease patients
por: Roth, Nils, et al.
Publicado: (2021) -
Hierarchical Hidden Markov models enable accurate and diverse detection of antimicrobial resistance sequences
por: Lakin, Steven M., et al.
Publicado: (2019) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005)