Cargando…

Observation of the exceptional point in cavity magnon-polaritons

Magnon–polaritons are hybrid light–matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both photons and magnons, the polaritons have limited life...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Dengke, Luo, Xiao-Qing, Wang, Yi-Pu, Li, Tie-Fu, You, J. Q.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676766/
https://www.ncbi.nlm.nih.gov/pubmed/29116092
http://dx.doi.org/10.1038/s41467-017-01634-w
Descripción
Sumario:Magnon–polaritons are hybrid light–matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both photons and magnons, the polaritons have limited lifetimes. However, stationary magnon–polariton states can be reached by a dynamical balance between pumping and losses, so the intrinsically nonequilibrium system may be described by a non-Hermitian Hamiltonian. Here we design a tunable cavity quantum electrodynamics system with a small ferromagnetic sphere in a microwave cavity and engineer the dissipations of photons and magnons to create cavity magnon–polaritons which have non-Hermitian spectral degeneracies. By tuning the magnon–photon coupling strength, we observe the polaritonic coherent perfect absorption and demonstrate the phase transition at the exceptional point. Our experiment offers a novel macroscopic quantum platform to explore the non-Hermitian physics of the cavity magnon–polaritons.