Cargando…
Tighter bound of quantum randomness certification for independent-devices scenario
Quantum random number generation attracts considerable attention, since its randomness inherently originates in quantum mechanics, but not mathematical assumptions. Randomness certification, e.g. entropy estimation, becomes a key issue in the context of quantum random number generation protocol. We...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676969/ https://www.ncbi.nlm.nih.gov/pubmed/29116193 http://dx.doi.org/10.1038/s41598-017-15318-4 |
Sumario: | Quantum random number generation attracts considerable attention, since its randomness inherently originates in quantum mechanics, but not mathematical assumptions. Randomness certification, e.g. entropy estimation, becomes a key issue in the context of quantum random number generation protocol. We study a self-testing protocol based on dimension witness, with the assumption of independent devices. It addresses the random number extraction problem in a practical prepare-and-measure scenario with uncharacterized devices. However, the lower bound of min-entropy as a function of dimension witness is not tight in existing works. We present a tighter bound of analytic form, by introducing the Lagrangian multiplier method to closely analyze the optimization problem on average guessing probability. Through simulation, it turns out that a significantly higher random number generation rate can be achieved in practice. |
---|