Cargando…
Link prediction in complex networks via matrix perturbation and decomposition
Link prediction in complex networks aims at predicting the missing links from available datasets which are always incomplete and subject to interfering noises. To obtain high prediction accuracy one should try to complete the missing information and at the same time eliminate the interfering noise f...
Autores principales: | Xu, Xiaoya, Liu, Bo, Wu, Jianshe, Jiao, Licheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677011/ https://www.ncbi.nlm.nih.gov/pubmed/29116210 http://dx.doi.org/10.1038/s41598-017-14847-2 |
Ejemplares similares
-
A perturbation-based framework for link prediction via non-negative matrix factorization
por: Wang, Wenjun, et al.
Publicado: (2016) -
CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
por: Gou, Shuiping, et al.
Publicado: (2013) -
Multireference Perturbation Theory with Cholesky Decomposition
for the Density Matrix Renormalization Group
por: Freitag, Leon, et al.
Publicado: (2017) -
Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks
por: Ma, Jingjing, et al.
Publicado: (2014) -
lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering
por: Wang, Bo, et al.
Publicado: (2022)