Cargando…
Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination
Microscopy examination has been the pillar of malaria diagnosis, being the recommended procedure when its quality can be maintained. However, the need for trained personnel and adequate equipment limits its availability and accessibility in malaria-endemic areas. Rapid, accurate, accessible diagnost...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677014/ https://www.ncbi.nlm.nih.gov/pubmed/28934170 http://dx.doi.org/10.3390/s17102167 |
_version_ | 1783277163070357504 |
---|---|
author | Rosado, Luís da Costa, José M. Correia Elias, Dirk Cardoso, Jaime S. |
author_facet | Rosado, Luís da Costa, José M. Correia Elias, Dirk Cardoso, Jaime S. |
author_sort | Rosado, Luís |
collection | PubMed |
description | Microscopy examination has been the pillar of malaria diagnosis, being the recommended procedure when its quality can be maintained. However, the need for trained personnel and adequate equipment limits its availability and accessibility in malaria-endemic areas. Rapid, accurate, accessible diagnostic tools are increasingly required, as malaria control programs extend parasite-based diagnosis and the prevalence decreases. This paper presents an image processing and analysis methodology using supervised classification to assess the presence of malaria parasites and determine the species and life cycle stage in Giemsa-stained thin blood smears. The main differentiation factor is the usage of microscopic images exclusively acquired with low cost and accessible tools such as smartphones, a dataset of 566 images manually annotated by an experienced parasilogist being used. Eight different species-stage combinations were considered in this work, with an automatic detection performance ranging from 73.9% to 96.2% in terms of sensitivity and from 92.6% to 99.3% in terms of specificity. These promising results attest to the potential of using this approach as a valid alternative to conventional microscopy examination, with comparable detection performances and acceptable computational times. |
format | Online Article Text |
id | pubmed-5677014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56770142017-11-17 Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination Rosado, Luís da Costa, José M. Correia Elias, Dirk Cardoso, Jaime S. Sensors (Basel) Article Microscopy examination has been the pillar of malaria diagnosis, being the recommended procedure when its quality can be maintained. However, the need for trained personnel and adequate equipment limits its availability and accessibility in malaria-endemic areas. Rapid, accurate, accessible diagnostic tools are increasingly required, as malaria control programs extend parasite-based diagnosis and the prevalence decreases. This paper presents an image processing and analysis methodology using supervised classification to assess the presence of malaria parasites and determine the species and life cycle stage in Giemsa-stained thin blood smears. The main differentiation factor is the usage of microscopic images exclusively acquired with low cost and accessible tools such as smartphones, a dataset of 566 images manually annotated by an experienced parasilogist being used. Eight different species-stage combinations were considered in this work, with an automatic detection performance ranging from 73.9% to 96.2% in terms of sensitivity and from 92.6% to 99.3% in terms of specificity. These promising results attest to the potential of using this approach as a valid alternative to conventional microscopy examination, with comparable detection performances and acceptable computational times. MDPI 2017-09-21 /pmc/articles/PMC5677014/ /pubmed/28934170 http://dx.doi.org/10.3390/s17102167 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rosado, Luís da Costa, José M. Correia Elias, Dirk Cardoso, Jaime S. Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination |
title | Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination |
title_full | Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination |
title_fullStr | Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination |
title_full_unstemmed | Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination |
title_short | Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination |
title_sort | mobile-based analysis of malaria-infected thin blood smears: automated species and life cycle stage determination |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677014/ https://www.ncbi.nlm.nih.gov/pubmed/28934170 http://dx.doi.org/10.3390/s17102167 |
work_keys_str_mv | AT rosadoluis mobilebasedanalysisofmalariainfectedthinbloodsmearsautomatedspeciesandlifecyclestagedetermination AT dacostajosemcorreia mobilebasedanalysisofmalariainfectedthinbloodsmearsautomatedspeciesandlifecyclestagedetermination AT eliasdirk mobilebasedanalysisofmalariainfectedthinbloodsmearsautomatedspeciesandlifecyclestagedetermination AT cardosojaimes mobilebasedanalysisofmalariainfectedthinbloodsmearsautomatedspeciesandlifecyclestagedetermination |