Cargando…
Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination
Microscopy examination has been the pillar of malaria diagnosis, being the recommended procedure when its quality can be maintained. However, the need for trained personnel and adequate equipment limits its availability and accessibility in malaria-endemic areas. Rapid, accurate, accessible diagnost...
Autores principales: | Rosado, Luís, da Costa, José M. Correia, Elias, Dirk, Cardoso, Jaime S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677014/ https://www.ncbi.nlm.nih.gov/pubmed/28934170 http://dx.doi.org/10.3390/s17102167 |
Ejemplares similares
-
Automated detection and staging of malaria parasites from cytological smears using convolutional neural networks
por: Davidson, Mira S., et al.
Publicado: (2021) -
Robust Image Processing Framework for Intelligent Multi-Stage Malaria Parasite Recognition of Thick and Thin Smear Images
por: Aris, Thaqifah Ahmad, et al.
Publicado: (2023) -
Deep Learning-Based Cell Detection and Extraction in Thin Blood Smears for Malaria Diagnosis
por: Ufuktepe, Deniz Kavzak, et al.
Publicado: (2021) -
Assessment of Expert-Level Automated Detection of Plasmodium falciparum in Digitized Thin Blood Smear Images
por: Kuo, Po-Chen, et al.
Publicado: (2020) -
Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy
por: Poostchi, Mahdieh, et al.
Publicado: (2018)