Cargando…
Modeling the Energy Performance of LoRaWAN
LoRaWAN is a flagship Low-Power Wide Area Network (LPWAN) technology that has highly attracted much attention from the community in recent years. Many LoRaWAN end-devices, such as sensors or actuators, are expected not to be powered by the electricity grid; therefore, it is crucial to investigate th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677147/ https://www.ncbi.nlm.nih.gov/pubmed/29035347 http://dx.doi.org/10.3390/s17102364 |
Sumario: | LoRaWAN is a flagship Low-Power Wide Area Network (LPWAN) technology that has highly attracted much attention from the community in recent years. Many LoRaWAN end-devices, such as sensors or actuators, are expected not to be powered by the electricity grid; therefore, it is crucial to investigate the energy consumption of LoRaWAN. However, published works have only focused on this topic to a limited extent. In this paper, we present analytical models that allow the characterization of LoRaWAN end-device current consumption, lifetime and energy cost of data delivery. The models, which have been derived based on measurements on a currently prevalent LoRaWAN hardware platform, allow us to quantify the impact of relevant physical and Medium Access Control (MAC) layer LoRaWAN parameters and mechanisms, as well as Bit Error Rate (BER) and collisions, on energy performance. Among others, evaluation results show that an appropriately configured LoRaWAN end-device platform powered by a battery of 2400 mAh can achieve a 1-year lifetime while sending one message every 5 min, and an asymptotic theoretical lifetime of 6 years for infrequent communication. |
---|