Cargando…
Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning
High-throughput experiments are becoming increasingly common, and scientists must balance hypothesis-driven experiments with genome-wide data acquisition. We sought to predict novel genes involved in Drosophila learning and long-term memory from existing public high-throughput data. We performed an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677163/ https://www.ncbi.nlm.nih.gov/pubmed/28889104 http://dx.doi.org/10.1534/g3.117.300172 |
_version_ | 1783277187449749504 |
---|---|
author | Kacsoh, Balint Z. Greene, Casey S. Bosco, Giovanni |
author_facet | Kacsoh, Balint Z. Greene, Casey S. Bosco, Giovanni |
author_sort | Kacsoh, Balint Z. |
collection | PubMed |
description | High-throughput experiments are becoming increasingly common, and scientists must balance hypothesis-driven experiments with genome-wide data acquisition. We sought to predict novel genes involved in Drosophila learning and long-term memory from existing public high-throughput data. We performed an analysis using PILGRM, which analyzes public gene expression compendia using machine learning. We evaluated the top prediction alongside genes involved in learning and memory in IMP, an interface for functional relationship networks. We identified Grunge/Atrophin (Gug/Atro), a transcriptional repressor, histone deacetylase, as our top candidate. We find, through multiple, distinct assays, that Gug has an active role as a modulator of memory retention in the fly and its function is required in the adult mushroom body. Depletion of Gug specifically in neurons of the adult mushroom body, after cell division and neuronal development is complete, suggests that Gug function is important for memory retention through regulation of neuronal activity, and not by altering neurodevelopment. Our study provides a previously uncharacterized role for Gug as a possible regulator of neuronal plasticity at the interface of memory retention and memory extinction. |
format | Online Article Text |
id | pubmed-5677163 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-56771632017-11-09 Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning Kacsoh, Balint Z. Greene, Casey S. Bosco, Giovanni G3 (Bethesda) Investigations High-throughput experiments are becoming increasingly common, and scientists must balance hypothesis-driven experiments with genome-wide data acquisition. We sought to predict novel genes involved in Drosophila learning and long-term memory from existing public high-throughput data. We performed an analysis using PILGRM, which analyzes public gene expression compendia using machine learning. We evaluated the top prediction alongside genes involved in learning and memory in IMP, an interface for functional relationship networks. We identified Grunge/Atrophin (Gug/Atro), a transcriptional repressor, histone deacetylase, as our top candidate. We find, through multiple, distinct assays, that Gug has an active role as a modulator of memory retention in the fly and its function is required in the adult mushroom body. Depletion of Gug specifically in neurons of the adult mushroom body, after cell division and neuronal development is complete, suggests that Gug function is important for memory retention through regulation of neuronal activity, and not by altering neurodevelopment. Our study provides a previously uncharacterized role for Gug as a possible regulator of neuronal plasticity at the interface of memory retention and memory extinction. Genetics Society of America 2017-09-09 /pmc/articles/PMC5677163/ /pubmed/28889104 http://dx.doi.org/10.1534/g3.117.300172 Text en Copyright © 2017 Kacsoh et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigations Kacsoh, Balint Z. Greene, Casey S. Bosco, Giovanni Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning |
title | Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning |
title_full | Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning |
title_fullStr | Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning |
title_full_unstemmed | Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning |
title_short | Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning |
title_sort | machine learning analysis identifies drosophila grunge/atrophin as an important learning and memory gene required for memory retention and social learning |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677163/ https://www.ncbi.nlm.nih.gov/pubmed/28889104 http://dx.doi.org/10.1534/g3.117.300172 |
work_keys_str_mv | AT kacsohbalintz machinelearninganalysisidentifiesdrosophilagrungeatrophinasanimportantlearningandmemorygenerequiredformemoryretentionandsociallearning AT greenecaseys machinelearninganalysisidentifiesdrosophilagrungeatrophinasanimportantlearningandmemorygenerequiredformemoryretentionandsociallearning AT boscogiovanni machinelearninganalysisidentifiesdrosophilagrungeatrophinasanimportantlearningandmemorygenerequiredformemoryretentionandsociallearning |