Cargando…
American Sign Language Alphabet Recognition Using a Neuromorphic Sensor and an Artificial Neural Network
This paper reports the design and analysis of an American Sign Language (ASL) alphabet translation system implemented in hardware using a Field-Programmable Gate Array. The system process consists of three stages, the first being the communication with the neuromorphic camera (also called Dynamic Vi...
Autores principales: | Rivera-Acosta, Miguel, Ortega-Cisneros, Susana, Rivera, Jorge, Sandoval-Ibarra, Federico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677181/ https://www.ncbi.nlm.nih.gov/pubmed/28937644 http://dx.doi.org/10.3390/s17102176 |
Ejemplares similares
-
American Sign Language Alphabet Recognition by Extracting Feature from Hand Pose Estimation
por: Shin, Jungpil, et al.
Publicado: (2021) -
Deep Learning Technology to Recognize American Sign Language Alphabet
por: Alsharif, Bader, et al.
Publicado: (2023) -
Sign Language Recognition for Arabic Alphabets Using Transfer Learning Technique
por: Zakariah, Mohammed, et al.
Publicado: (2022) -
Towards Real-Time and Rotation-Invariant American Sign Language Alphabet Recognition Using a Range Camera
por: Lahamy, Hervé, et al.
Publicado: (2012) -
ArASL: Arabic Alphabets Sign Language Dataset
por: Latif, Ghazanfar, et al.
Publicado: (2019)