Cargando…
Robust Stereo Visual Odometry Using Improved RANSAC-Based Methods for Mobile Robot Localization
In this paper, we present a novel approach for stereo visual odometry with robust motion estimation that is faster and more accurate than standard RANSAC (Random Sample Consensus). Our method makes improvements in RANSAC in three aspects: first, the hypotheses are preferentially generated by samplin...
Autores principales: | Liu, Yanqing, Gu, Yuzhang, Li, Jiamao, Zhang, Xiaolin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677260/ https://www.ncbi.nlm.nih.gov/pubmed/29027935 http://dx.doi.org/10.3390/s17102339 |
Ejemplares similares
-
Robust Stereo Visual-Inertial Odometry Using Nonlinear Optimization
por: Ma, Shujun, et al.
Publicado: (2019) -
ESVIO: Event-Based Stereo Visual-Inertial Odometry
por: Liu, Zhe, et al.
Publicado: (2023) -
Lightweight Visual Odometry for Autonomous Mobile Robots
por: Aladem, Mohamed, et al.
Publicado: (2018) -
Stereo Visual Odometry Pose Correction through Unsupervised Deep Learning
por: Zhang, Sumin, et al.
Publicado: (2021) -
RANSAC for Robotic Applications: A Survey
por: Martínez-Otzeta, José María, et al.
Publicado: (2022)