Cargando…

A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper descri...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jilin, Tu, Hangdi, Ren, Yongjian, Wan, Jian, Zhou, Li, Li, Mingwei, Wang, Jue, Yu, Lifeng, Zhao, Chang, Zhang, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677357/
https://www.ncbi.nlm.nih.gov/pubmed/28934163
http://dx.doi.org/10.3390/s17102172
_version_ 1783277226437902336
author Zhang, Jilin
Tu, Hangdi
Ren, Yongjian
Wan, Jian
Zhou, Li
Li, Mingwei
Wang, Jue
Yu, Lifeng
Zhao, Chang
Zhang, Lei
author_facet Zhang, Jilin
Tu, Hangdi
Ren, Yongjian
Wan, Jian
Zhou, Li
Li, Mingwei
Wang, Jue
Yu, Lifeng
Zhao, Chang
Zhang, Lei
author_sort Zhang, Jilin
collection PubMed
description In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.
format Online
Article
Text
id pubmed-5677357
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-56773572017-11-17 A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors Zhang, Jilin Tu, Hangdi Ren, Yongjian Wan, Jian Zhou, Li Li, Mingwei Wang, Jue Yu, Lifeng Zhao, Chang Zhang, Lei Sensors (Basel) Article In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors. MDPI 2017-09-21 /pmc/articles/PMC5677357/ /pubmed/28934163 http://dx.doi.org/10.3390/s17102172 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Jilin
Tu, Hangdi
Ren, Yongjian
Wan, Jian
Zhou, Li
Li, Mingwei
Wang, Jue
Yu, Lifeng
Zhao, Chang
Zhang, Lei
A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors
title A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors
title_full A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors
title_fullStr A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors
title_full_unstemmed A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors
title_short A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors
title_sort parameter communication optimization strategy for distributed machine learning in sensors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677357/
https://www.ncbi.nlm.nih.gov/pubmed/28934163
http://dx.doi.org/10.3390/s17102172
work_keys_str_mv AT zhangjilin aparametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT tuhangdi aparametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT renyongjian aparametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT wanjian aparametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT zhouli aparametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT limingwei aparametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT wangjue aparametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT yulifeng aparametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT zhaochang aparametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT zhanglei aparametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT zhangjilin parametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT tuhangdi parametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT renyongjian parametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT wanjian parametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT zhouli parametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT limingwei parametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT wangjue parametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT yulifeng parametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT zhaochang parametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors
AT zhanglei parametercommunicationoptimizationstrategyfordistributedmachinelearninginsensors