Cargando…
Self-Taught Learning Based on Sparse Autoencoder for E-Nose in Wound Infection Detection
For an electronic nose (E-nose) in wound infection distinguishing, traditional learning methods have always needed large quantities of labeled wound infection samples, which are both limited and expensive; thus, we introduce self-taught learning combined with sparse autoencoder and radial basis func...
Autores principales: | He, Peilin, Jia, Pengfei, Qiao, Siqi, Duan, Shukai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677371/ https://www.ncbi.nlm.nih.gov/pubmed/28991154 http://dx.doi.org/10.3390/s17102279 |
Ejemplares similares
-
A Novel Semi-Supervised Method of Electronic Nose for Indoor Pollution Detection Trained by M-S4VMs
por: Huang, Tailai, et al.
Publicado: (2016) -
A Novel Semi-Supervised Electronic Nose Learning Technique: M-Training
por: Jia, Pengfei, et al.
Publicado: (2016) -
Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network
por: Pei, Guangsheng, et al.
Publicado: (2020) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
On the benefits of self-taught learning for brain decoding
por: Germani, Elodie, et al.
Publicado: (2023)