Cargando…
Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods
Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize co...
Autores principales: | Vizcaíno, Iván P., Carrera, Enrique V., Muñoz-Romero, Sergio, Cumbal, Luis H., Rojo-Álvarez, José Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677420/ https://www.ncbi.nlm.nih.gov/pubmed/29035333 http://dx.doi.org/10.3390/s17102357 |
Ejemplares similares
-
Controlling for localised spatio-temporal autocorrelation in long-term air pollution and health studies
por: Lee, Duncan, et al.
Publicado: (2014) -
Spatio-Temporal Water Hyacinth Monitoring in the Lower Mondego (Portugal) Using Remote Sensing Data
por: Pádua, Luís, et al.
Publicado: (2022) -
A new approach to the intracardiac inverse problem using Laplacian distance kernel
por: Caulier-Cisterna, Raúl, et al.
Publicado: (2018) -
Applying Spatio-temporal Scan Statistics and Spatial Autocorrelation Statistics to identify Covid-19 clusters in the world - A Vaccination Strategy?
por: Morais, Lucas Rabelo de Araújo, et al.
Publicado: (2021) -
Nonparametric Evaluation of Dynamic Disease Risk: A Spatio-Temporal Kernel Approach
por: Zhang, Zhijie, et al.
Publicado: (2011)