Cargando…
Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study
BACKGROUND: The clinical course of Idiopathic Pulmonary Fibrosis (IPF) is unpredictable. Clinical prediction tools are not accurate enough to predict disease outcomes. METHODS: All-comers with Idiopathic Pulmonary Fibrosis diagnosis were enrolled in a six-cohort study. Peripheral blood mononuclear c...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677538/ https://www.ncbi.nlm.nih.gov/pubmed/28942086 http://dx.doi.org/10.1016/S2213-2600(17)30349-1 |
_version_ | 1783277262894792704 |
---|---|
author | Herazo-Maya, Jose D. Sun, Jiehuan Molyneaux, Philip L. Li, Qin Villalba, Julian A. Tzouvelekis, Argyrios Lynn, Heather Juan-Guardela, Brenda M. Risquez, Cristobal Osorio, Juan C. Yan, Xiting Michel, George Aurelien, Nachelle Lindell, Kathleen O. Klesen, Melinda J. Moffatt, Miriam F. Cookson, William O. Zhang, Yingze Garcia, Joe GN Noth, Imre Prasse, Antje Bar-Joseph, Ziv Gibson, Kevin F. Zhao, Hongyu Herzog, Erica L. Rosas, Ivan O. Maher, Toby M. Kaminski, Naftali |
author_facet | Herazo-Maya, Jose D. Sun, Jiehuan Molyneaux, Philip L. Li, Qin Villalba, Julian A. Tzouvelekis, Argyrios Lynn, Heather Juan-Guardela, Brenda M. Risquez, Cristobal Osorio, Juan C. Yan, Xiting Michel, George Aurelien, Nachelle Lindell, Kathleen O. Klesen, Melinda J. Moffatt, Miriam F. Cookson, William O. Zhang, Yingze Garcia, Joe GN Noth, Imre Prasse, Antje Bar-Joseph, Ziv Gibson, Kevin F. Zhao, Hongyu Herzog, Erica L. Rosas, Ivan O. Maher, Toby M. Kaminski, Naftali |
author_sort | Herazo-Maya, Jose D. |
collection | PubMed |
description | BACKGROUND: The clinical course of Idiopathic Pulmonary Fibrosis (IPF) is unpredictable. Clinical prediction tools are not accurate enough to predict disease outcomes. METHODS: All-comers with Idiopathic Pulmonary Fibrosis diagnosis were enrolled in a six-cohort study. Peripheral blood mononuclear cells or whole blood was collected at baseline from 425 participants and during follow up from 98 patients. The 52-gene signature was measured by the nCounter(®) analysis system in four cohorts and extracted from microarray data in two others. The Scoring Algorithm for Molecular Subphenotypes (SAMS) was used to classify patients into low or high risk groups based on a 52-gene signature. Mortality and transplant-free survival were studied using Competing risk and Cox proportional-hazard models, respectively. Time course data and response to anti-fibrotic drugs were analyzed using linear mixed-effect models. FINDINGS: The application of SAMS to the 52-gene signature identified two groups of IPF patients (low and high risk) with significant differences in mortality or transplant-free survival in each of the six cohorts (HR 2·03–4·37). Pooled data revealed similar results for mortality (HR:2·18, 95%CI:1·53–3·09, P<0·0001) or transplant-free survival (HR:2·04, 95%CI: 1·52–2·74, P<0·0001). Adding 52-gene risk profiles to the Gender, Age and Physiology (GAP) index significantly improved its mortality predictive accuracy. Temporal changes in SAMS scores were associated with changes in forced vital capacity (FVC) in two cohorts. Untreated patients did not shift their risk profile over time. A simultaneous increase in up score and decrease in down score was predictive of transplant-free survival (HR:3·18· 95%CI 1·16, 8·76, P=0·025) in the Pittsburgh cohort. A simultaneous decrease in up score and increase in down score after initiation of anti-fibrotic drugs was associated with a significant (P=0·005) improvement in FVC in the Yale cohort. INTERPRETATION: The peripheral blood 52-gene expression signature is predictive of outcome in patients with IPF. The potential value of the 52-gene signature in predicting response to therapy should be determined in prospective studies. |
format | Online Article Text |
id | pubmed-5677538 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-56775382018-11-01 Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study Herazo-Maya, Jose D. Sun, Jiehuan Molyneaux, Philip L. Li, Qin Villalba, Julian A. Tzouvelekis, Argyrios Lynn, Heather Juan-Guardela, Brenda M. Risquez, Cristobal Osorio, Juan C. Yan, Xiting Michel, George Aurelien, Nachelle Lindell, Kathleen O. Klesen, Melinda J. Moffatt, Miriam F. Cookson, William O. Zhang, Yingze Garcia, Joe GN Noth, Imre Prasse, Antje Bar-Joseph, Ziv Gibson, Kevin F. Zhao, Hongyu Herzog, Erica L. Rosas, Ivan O. Maher, Toby M. Kaminski, Naftali Lancet Respir Med Article BACKGROUND: The clinical course of Idiopathic Pulmonary Fibrosis (IPF) is unpredictable. Clinical prediction tools are not accurate enough to predict disease outcomes. METHODS: All-comers with Idiopathic Pulmonary Fibrosis diagnosis were enrolled in a six-cohort study. Peripheral blood mononuclear cells or whole blood was collected at baseline from 425 participants and during follow up from 98 patients. The 52-gene signature was measured by the nCounter(®) analysis system in four cohorts and extracted from microarray data in two others. The Scoring Algorithm for Molecular Subphenotypes (SAMS) was used to classify patients into low or high risk groups based on a 52-gene signature. Mortality and transplant-free survival were studied using Competing risk and Cox proportional-hazard models, respectively. Time course data and response to anti-fibrotic drugs were analyzed using linear mixed-effect models. FINDINGS: The application of SAMS to the 52-gene signature identified two groups of IPF patients (low and high risk) with significant differences in mortality or transplant-free survival in each of the six cohorts (HR 2·03–4·37). Pooled data revealed similar results for mortality (HR:2·18, 95%CI:1·53–3·09, P<0·0001) or transplant-free survival (HR:2·04, 95%CI: 1·52–2·74, P<0·0001). Adding 52-gene risk profiles to the Gender, Age and Physiology (GAP) index significantly improved its mortality predictive accuracy. Temporal changes in SAMS scores were associated with changes in forced vital capacity (FVC) in two cohorts. Untreated patients did not shift their risk profile over time. A simultaneous increase in up score and decrease in down score was predictive of transplant-free survival (HR:3·18· 95%CI 1·16, 8·76, P=0·025) in the Pittsburgh cohort. A simultaneous decrease in up score and increase in down score after initiation of anti-fibrotic drugs was associated with a significant (P=0·005) improvement in FVC in the Yale cohort. INTERPRETATION: The peripheral blood 52-gene expression signature is predictive of outcome in patients with IPF. The potential value of the 52-gene signature in predicting response to therapy should be determined in prospective studies. 2017-09-21 2017-11 /pmc/articles/PMC5677538/ /pubmed/28942086 http://dx.doi.org/10.1016/S2213-2600(17)30349-1 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This manuscript version is made available under the CC BY-NC-ND 4.0 license. |
spellingShingle | Article Herazo-Maya, Jose D. Sun, Jiehuan Molyneaux, Philip L. Li, Qin Villalba, Julian A. Tzouvelekis, Argyrios Lynn, Heather Juan-Guardela, Brenda M. Risquez, Cristobal Osorio, Juan C. Yan, Xiting Michel, George Aurelien, Nachelle Lindell, Kathleen O. Klesen, Melinda J. Moffatt, Miriam F. Cookson, William O. Zhang, Yingze Garcia, Joe GN Noth, Imre Prasse, Antje Bar-Joseph, Ziv Gibson, Kevin F. Zhao, Hongyu Herzog, Erica L. Rosas, Ivan O. Maher, Toby M. Kaminski, Naftali Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study |
title | Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study |
title_full | Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study |
title_fullStr | Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study |
title_full_unstemmed | Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study |
title_short | Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study |
title_sort | validating a 52-gene risk profile for outcome prediction in idiopathic pulmonary fibrosis: an international multicentre cohort study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677538/ https://www.ncbi.nlm.nih.gov/pubmed/28942086 http://dx.doi.org/10.1016/S2213-2600(17)30349-1 |
work_keys_str_mv | AT herazomayajosed validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT sunjiehuan validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT molyneauxphilipl validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT liqin validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT villalbajuliana validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT tzouvelekisargyrios validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT lynnheather validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT juanguardelabrendam validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT risquezcristobal validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT osoriojuanc validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT yanxiting validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT michelgeorge validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT aureliennachelle validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT lindellkathleeno validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT klesenmelindaj validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT moffattmiriamf validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT cooksonwilliamo validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT zhangyingze validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT garciajoegn validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT nothimre validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT prasseantje validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT barjosephziv validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT gibsonkevinf validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT zhaohongyu validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT herzogerical validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT rosasivano validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT mahertobym validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy AT kaminskinaftali validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy |