Cargando…

Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study

BACKGROUND: The clinical course of Idiopathic Pulmonary Fibrosis (IPF) is unpredictable. Clinical prediction tools are not accurate enough to predict disease outcomes. METHODS: All-comers with Idiopathic Pulmonary Fibrosis diagnosis were enrolled in a six-cohort study. Peripheral blood mononuclear c...

Descripción completa

Detalles Bibliográficos
Autores principales: Herazo-Maya, Jose D., Sun, Jiehuan, Molyneaux, Philip L., Li, Qin, Villalba, Julian A., Tzouvelekis, Argyrios, Lynn, Heather, Juan-Guardela, Brenda M., Risquez, Cristobal, Osorio, Juan C., Yan, Xiting, Michel, George, Aurelien, Nachelle, Lindell, Kathleen O., Klesen, Melinda J., Moffatt, Miriam F., Cookson, William O., Zhang, Yingze, Garcia, Joe GN, Noth, Imre, Prasse, Antje, Bar-Joseph, Ziv, Gibson, Kevin F., Zhao, Hongyu, Herzog, Erica L., Rosas, Ivan O., Maher, Toby M., Kaminski, Naftali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677538/
https://www.ncbi.nlm.nih.gov/pubmed/28942086
http://dx.doi.org/10.1016/S2213-2600(17)30349-1
_version_ 1783277262894792704
author Herazo-Maya, Jose D.
Sun, Jiehuan
Molyneaux, Philip L.
Li, Qin
Villalba, Julian A.
Tzouvelekis, Argyrios
Lynn, Heather
Juan-Guardela, Brenda M.
Risquez, Cristobal
Osorio, Juan C.
Yan, Xiting
Michel, George
Aurelien, Nachelle
Lindell, Kathleen O.
Klesen, Melinda J.
Moffatt, Miriam F.
Cookson, William O.
Zhang, Yingze
Garcia, Joe GN
Noth, Imre
Prasse, Antje
Bar-Joseph, Ziv
Gibson, Kevin F.
Zhao, Hongyu
Herzog, Erica L.
Rosas, Ivan O.
Maher, Toby M.
Kaminski, Naftali
author_facet Herazo-Maya, Jose D.
Sun, Jiehuan
Molyneaux, Philip L.
Li, Qin
Villalba, Julian A.
Tzouvelekis, Argyrios
Lynn, Heather
Juan-Guardela, Brenda M.
Risquez, Cristobal
Osorio, Juan C.
Yan, Xiting
Michel, George
Aurelien, Nachelle
Lindell, Kathleen O.
Klesen, Melinda J.
Moffatt, Miriam F.
Cookson, William O.
Zhang, Yingze
Garcia, Joe GN
Noth, Imre
Prasse, Antje
Bar-Joseph, Ziv
Gibson, Kevin F.
Zhao, Hongyu
Herzog, Erica L.
Rosas, Ivan O.
Maher, Toby M.
Kaminski, Naftali
author_sort Herazo-Maya, Jose D.
collection PubMed
description BACKGROUND: The clinical course of Idiopathic Pulmonary Fibrosis (IPF) is unpredictable. Clinical prediction tools are not accurate enough to predict disease outcomes. METHODS: All-comers with Idiopathic Pulmonary Fibrosis diagnosis were enrolled in a six-cohort study. Peripheral blood mononuclear cells or whole blood was collected at baseline from 425 participants and during follow up from 98 patients. The 52-gene signature was measured by the nCounter(®) analysis system in four cohorts and extracted from microarray data in two others. The Scoring Algorithm for Molecular Subphenotypes (SAMS) was used to classify patients into low or high risk groups based on a 52-gene signature. Mortality and transplant-free survival were studied using Competing risk and Cox proportional-hazard models, respectively. Time course data and response to anti-fibrotic drugs were analyzed using linear mixed-effect models. FINDINGS: The application of SAMS to the 52-gene signature identified two groups of IPF patients (low and high risk) with significant differences in mortality or transplant-free survival in each of the six cohorts (HR 2·03–4·37). Pooled data revealed similar results for mortality (HR:2·18, 95%CI:1·53–3·09, P<0·0001) or transplant-free survival (HR:2·04, 95%CI: 1·52–2·74, P<0·0001). Adding 52-gene risk profiles to the Gender, Age and Physiology (GAP) index significantly improved its mortality predictive accuracy. Temporal changes in SAMS scores were associated with changes in forced vital capacity (FVC) in two cohorts. Untreated patients did not shift their risk profile over time. A simultaneous increase in up score and decrease in down score was predictive of transplant-free survival (HR:3·18· 95%CI 1·16, 8·76, P=0·025) in the Pittsburgh cohort. A simultaneous decrease in up score and increase in down score after initiation of anti-fibrotic drugs was associated with a significant (P=0·005) improvement in FVC in the Yale cohort. INTERPRETATION: The peripheral blood 52-gene expression signature is predictive of outcome in patients with IPF. The potential value of the 52-gene signature in predicting response to therapy should be determined in prospective studies.
format Online
Article
Text
id pubmed-5677538
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-56775382018-11-01 Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study Herazo-Maya, Jose D. Sun, Jiehuan Molyneaux, Philip L. Li, Qin Villalba, Julian A. Tzouvelekis, Argyrios Lynn, Heather Juan-Guardela, Brenda M. Risquez, Cristobal Osorio, Juan C. Yan, Xiting Michel, George Aurelien, Nachelle Lindell, Kathleen O. Klesen, Melinda J. Moffatt, Miriam F. Cookson, William O. Zhang, Yingze Garcia, Joe GN Noth, Imre Prasse, Antje Bar-Joseph, Ziv Gibson, Kevin F. Zhao, Hongyu Herzog, Erica L. Rosas, Ivan O. Maher, Toby M. Kaminski, Naftali Lancet Respir Med Article BACKGROUND: The clinical course of Idiopathic Pulmonary Fibrosis (IPF) is unpredictable. Clinical prediction tools are not accurate enough to predict disease outcomes. METHODS: All-comers with Idiopathic Pulmonary Fibrosis diagnosis were enrolled in a six-cohort study. Peripheral blood mononuclear cells or whole blood was collected at baseline from 425 participants and during follow up from 98 patients. The 52-gene signature was measured by the nCounter(®) analysis system in four cohorts and extracted from microarray data in two others. The Scoring Algorithm for Molecular Subphenotypes (SAMS) was used to classify patients into low or high risk groups based on a 52-gene signature. Mortality and transplant-free survival were studied using Competing risk and Cox proportional-hazard models, respectively. Time course data and response to anti-fibrotic drugs were analyzed using linear mixed-effect models. FINDINGS: The application of SAMS to the 52-gene signature identified two groups of IPF patients (low and high risk) with significant differences in mortality or transplant-free survival in each of the six cohorts (HR 2·03–4·37). Pooled data revealed similar results for mortality (HR:2·18, 95%CI:1·53–3·09, P<0·0001) or transplant-free survival (HR:2·04, 95%CI: 1·52–2·74, P<0·0001). Adding 52-gene risk profiles to the Gender, Age and Physiology (GAP) index significantly improved its mortality predictive accuracy. Temporal changes in SAMS scores were associated with changes in forced vital capacity (FVC) in two cohorts. Untreated patients did not shift their risk profile over time. A simultaneous increase in up score and decrease in down score was predictive of transplant-free survival (HR:3·18· 95%CI 1·16, 8·76, P=0·025) in the Pittsburgh cohort. A simultaneous decrease in up score and increase in down score after initiation of anti-fibrotic drugs was associated with a significant (P=0·005) improvement in FVC in the Yale cohort. INTERPRETATION: The peripheral blood 52-gene expression signature is predictive of outcome in patients with IPF. The potential value of the 52-gene signature in predicting response to therapy should be determined in prospective studies. 2017-09-21 2017-11 /pmc/articles/PMC5677538/ /pubmed/28942086 http://dx.doi.org/10.1016/S2213-2600(17)30349-1 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This manuscript version is made available under the CC BY-NC-ND 4.0 license.
spellingShingle Article
Herazo-Maya, Jose D.
Sun, Jiehuan
Molyneaux, Philip L.
Li, Qin
Villalba, Julian A.
Tzouvelekis, Argyrios
Lynn, Heather
Juan-Guardela, Brenda M.
Risquez, Cristobal
Osorio, Juan C.
Yan, Xiting
Michel, George
Aurelien, Nachelle
Lindell, Kathleen O.
Klesen, Melinda J.
Moffatt, Miriam F.
Cookson, William O.
Zhang, Yingze
Garcia, Joe GN
Noth, Imre
Prasse, Antje
Bar-Joseph, Ziv
Gibson, Kevin F.
Zhao, Hongyu
Herzog, Erica L.
Rosas, Ivan O.
Maher, Toby M.
Kaminski, Naftali
Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study
title Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study
title_full Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study
title_fullStr Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study
title_full_unstemmed Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study
title_short Validating a 52-gene risk profile for outcome prediction in Idiopathic Pulmonary Fibrosis: an international multicentre cohort study
title_sort validating a 52-gene risk profile for outcome prediction in idiopathic pulmonary fibrosis: an international multicentre cohort study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677538/
https://www.ncbi.nlm.nih.gov/pubmed/28942086
http://dx.doi.org/10.1016/S2213-2600(17)30349-1
work_keys_str_mv AT herazomayajosed validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT sunjiehuan validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT molyneauxphilipl validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT liqin validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT villalbajuliana validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT tzouvelekisargyrios validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT lynnheather validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT juanguardelabrendam validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT risquezcristobal validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT osoriojuanc validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT yanxiting validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT michelgeorge validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT aureliennachelle validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT lindellkathleeno validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT klesenmelindaj validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT moffattmiriamf validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT cooksonwilliamo validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT zhangyingze validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT garciajoegn validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT nothimre validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT prasseantje validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT barjosephziv validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT gibsonkevinf validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT zhaohongyu validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT herzogerical validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT rosasivano validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT mahertobym validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy
AT kaminskinaftali validatinga52generiskprofileforoutcomepredictioninidiopathicpulmonaryfibrosisaninternationalmulticentrecohortstudy