Cargando…

Near infrared light decreases synaptic vulnerability to amyloid beta oligomers

Synaptic dysfunction due to the disrupting binding of amyloid beta (Aβ) and tau oligomers is one of the earliest impairments in Alzheimer’s Disease (AD), driving initial cognitive deficits and clinical manifestation. Consequently, there is ample consensus that preventing early synaptic dysfunction w...

Descripción completa

Detalles Bibliográficos
Autores principales: Comerota, Michele M., Krishnan, Balaji, Taglialatela, Giulio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678170/
https://www.ncbi.nlm.nih.gov/pubmed/29118388
http://dx.doi.org/10.1038/s41598-017-15357-x
Descripción
Sumario:Synaptic dysfunction due to the disrupting binding of amyloid beta (Aβ) and tau oligomers is one of the earliest impairments in Alzheimer’s Disease (AD), driving initial cognitive deficits and clinical manifestation. Consequently, there is ample consensus that preventing early synaptic dysfunction would be an effective therapeutic strategy for AD. With this goal in mind, we investigated the effect of a treatment of mice with near infrared (NIR) light on synaptic vulnerability to Aβ oligomers. We found that Aβ oligomer binding to CNS synaptosomes isolated from wild type (wt) mice treated with NIR light was significantly reduced and the resulting suppression of long term potentiation (LTP) by Aβ oligomers was prevented. Similarly, APP transgenic mice treated with NIR showed a significant reduction of endogenous Aβ at CNS synapses. We further found that these phenomena were accompanied by increased synaptic mitochondrial membrane potential in both wt and Tg2576 mice. This study provides evidence that NIR light can effectively reduce synaptic vulnerability to damaging Aβ oligomers, thus furthering NIR light therapy as a viable treatment for AD.