Cargando…
Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure
This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10(−3) s(−1) to 1 s(−1)) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive form...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678226/ https://www.ncbi.nlm.nih.gov/pubmed/29152021 http://dx.doi.org/10.1080/14686996.2017.1386530 |
_version_ | 1783277397808775168 |
---|---|
author | Matsumoto, Hiroaki Naito, Daiki Miyoshi, Kento Yamanaka, Kenta Chiba, Akihiko Yamabe-Mitarai, Yoko |
author_facet | Matsumoto, Hiroaki Naito, Daiki Miyoshi, Kento Yamanaka, Kenta Chiba, Akihiko Yamabe-Mitarai, Yoko |
author_sort | Matsumoto, Hiroaki |
collection | PubMed |
description | This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10(−3) s(−1) to 1 s(−1)) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, T (β) (880~890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above T (β), continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+β) region. |
format | Online Article Text |
id | pubmed-5678226 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-56782262017-11-17 Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure Matsumoto, Hiroaki Naito, Daiki Miyoshi, Kento Yamanaka, Kenta Chiba, Akihiko Yamabe-Mitarai, Yoko Sci Technol Adv Mater Focus on Future leaders in structural materials research This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10(−3) s(−1) to 1 s(−1)) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, T (β) (880~890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above T (β), continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+β) region. Taylor & Francis 2017-11-03 /pmc/articles/PMC5678226/ /pubmed/29152021 http://dx.doi.org/10.1080/14686996.2017.1386530 Text en © 2017 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Focus on Future leaders in structural materials research Matsumoto, Hiroaki Naito, Daiki Miyoshi, Kento Yamanaka, Kenta Chiba, Akihiko Yamabe-Mitarai, Yoko Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure |
title | Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure |
title_full | Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure |
title_fullStr | Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure |
title_full_unstemmed | Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure |
title_short | Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure |
title_sort | forging property, processing map, and mesoscale microstructural evolution modeling of a ti-17 alloy with a lamellar (α+β) starting microstructure |
topic | Focus on Future leaders in structural materials research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678226/ https://www.ncbi.nlm.nih.gov/pubmed/29152021 http://dx.doi.org/10.1080/14686996.2017.1386530 |
work_keys_str_mv | AT matsumotohiroaki forgingpropertyprocessingmapandmesoscalemicrostructuralevolutionmodelingofati17alloywithalamellarabstartingmicrostructure AT naitodaiki forgingpropertyprocessingmapandmesoscalemicrostructuralevolutionmodelingofati17alloywithalamellarabstartingmicrostructure AT miyoshikento forgingpropertyprocessingmapandmesoscalemicrostructuralevolutionmodelingofati17alloywithalamellarabstartingmicrostructure AT yamanakakenta forgingpropertyprocessingmapandmesoscalemicrostructuralevolutionmodelingofati17alloywithalamellarabstartingmicrostructure AT chibaakihiko forgingpropertyprocessingmapandmesoscalemicrostructuralevolutionmodelingofati17alloywithalamellarabstartingmicrostructure AT yamabemitaraiyoko forgingpropertyprocessingmapandmesoscalemicrostructuralevolutionmodelingofati17alloywithalamellarabstartingmicrostructure |