Cargando…
Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model
We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality...
Autores principales: | Ito, Shin-ichi, Nagao, Hiromichi, Kasuya, Tadashi, Inoue, Junya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678441/ https://www.ncbi.nlm.nih.gov/pubmed/29152018 http://dx.doi.org/10.1080/14686996.2017.1378921 |
Ejemplares similares
-
Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure
por: Matsumoto, Hiroaki, et al.
Publicado: (2017) -
Petascale supercomputing to accelerate the design of
high-temperature alloys
por: Shin, Dongwon, et al.
Publicado: (2017) -
Modelling of the material flow of Nd-Fe-B magnets under high temperature deformation via finite element simulation method
por: Chen, Yen-Ju, et al.
Publicado: (2017) -
Quick high-temperature hydrothermal synthesis of mesoporous materials with 3D cubic structure for the adsorption of lysozyme
por: Lawrence, Geoffrey, et al.
Publicado: (2015) -
Structure and cation distribution in perovskites with small cations at the A site: the case of ScCoO(3)
por: Yi, Wei, et al.
Publicado: (2015)