Cargando…
Machine learning reveals orbital interaction in materials
We propose a novel representation of materials named an ‘orbital-field matrix (OFM)’, which is based on the distribution of valence shell electrons. We demonstrate that this new representation can be highly useful in mining material data. Experimental investigation shows that the formation energies...
Autores principales: | Lam Pham, Tien, Kino, Hiori, Terakura, Kiyoyuki, Miyake, Takashi, Tsuda, Koji, Takigawa, Ichigaku, Chi Dam, Hieu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678453/ https://www.ncbi.nlm.nih.gov/pubmed/29152012 http://dx.doi.org/10.1080/14686996.2017.1378060 |
Ejemplares similares
-
Explainable machine learning for materials discovery: predicting the potentially formable Nd–Fe–B crystal structures and extracting the structure–stability relationship
por: Pham, Tien-Lam, et al.
Publicado: (2020) -
Data-driven exploration of new pressure-induced superconductivity in PbBi(2)Te(4)
por: Matsumoto, Ryo, et al.
Publicado: (2018) -
MDTS: automatic complex materials design using Monte Carlo tree search
por: M. Dieb, Thaer, et al.
Publicado: (2017) -
ChemTS: an efficient python library for de novo molecular generation
por: Yang, Xiufeng, et al.
Publicado: (2017) -
NMR-TS: de novo molecule identification from NMR spectra
por: Zhang, Jinzhe, et al.
Publicado: (2020)