Cargando…
Evaluation of an open source method for calculating physical activity in dogs from harness and collar based sensors
BACKGROUND: The ability to make objective measurements of physical activity in dogs has both clinical and research applications. Accelerometers offer a non-intrusive and convenient solution. Of the commercialy available sensors, measurements are commonly given in manufacturer bespoke units and calcu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678807/ https://www.ncbi.nlm.nih.gov/pubmed/29116008 http://dx.doi.org/10.1186/s12917-017-1228-8 |
Sumario: | BACKGROUND: The ability to make objective measurements of physical activity in dogs has both clinical and research applications. Accelerometers offer a non-intrusive and convenient solution. Of the commercialy available sensors, measurements are commonly given in manufacturer bespoke units and calculated with closed source approaches. Furthermore, the validation studies that exist for such devices are mounting location dependant, not transferable between brands or not suitable for handling modern raw accelerometry type data. METHODS: This paper describes a validation study of n = 5 where 4 sensors were placed on each dog; 2 on a harness and 2 on a collar. Each position held two sensors from different manufacturers; Actigraph (which has previously been validated for use on the collar) and VetSens (which provides un-filtered accelerometry data). The aims of the study was to firstly evaluate the performance of an open-design method of converting raw accelerometry data into units that have previously been validated. Secondly, comparison was made between sensors mounted at each location for determining physical activity state. RESULTS: Once the raw actigraphy data had been processed with the open-design method, results from a 7 day measurement revealed no significant difference in physical activity estimates via a cutpoint approach between the sensor manufacturers. A second finding was a low inter-site variability between the ventral collar and dorsal harness locations (Pearsons r(2) = 0.96). CONCLUSIONS: Using the open-design methodology, raw, un-filtered data from the VetSens sensors can be compared or pooled with data gathered from Actigraph sensors. The results also provide strong evidence that ventral collar and dorsal harness sites may be used interchangeably. This enables studies to be designed with a larger inclusion criteria (encompassing dogs that are not well suited for wearing an instrumented collar) and ensures high levels of welfare while maintaining measurement validity. |
---|