Cargando…

Caffeic acid phenethyl ester promotes haematopoietic stem/progenitor cell homing and engraftment

BACKGROUND: Several studies have suggested that caffeic acid phenethyl ester (CAPE) can induce the expression of hypoxia inducible factor-1α (HIF-1α) protein. We determined whether CAPE has a novel function in improving the homing and engraftment of haematopoietic stem/progenitor cells (HSPCs) by re...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiaofang, Han, Yi, Zhang, Bowen, Liu, Yiming, Wang, Sihan, Liao, Tuling, Deng, Ziliang, Fan, Zeng, Zhang, Jing, He, Lijuan, Yue, Wen, Li, Yanhua, Pei, Xuetao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678809/
https://www.ncbi.nlm.nih.gov/pubmed/29116023
http://dx.doi.org/10.1186/s13287-017-0708-x
Descripción
Sumario:BACKGROUND: Several studies have suggested that caffeic acid phenethyl ester (CAPE) can induce the expression of hypoxia inducible factor-1α (HIF-1α) protein. We determined whether CAPE has a novel function in improving the homing and engraftment of haematopoietic stem/progenitor cells (HSPCs) by regulating HIF-1α gene expression in the bone marrow (BM) niche. METHODS: For survival experiments, lethally irradiated C57BL/6 mice were injected with a low number of BM mononuclear cells (MNCs) and CAPE according to the indicated schedule. Homing efficiency analysis was conducted using flow cytometry and colony-forming unit (CFU) assays. The influence of intraperitoneal injection of CAPE on short-term and long-term engraftment of HSPCs was evaluated using competitive and non-competitive mouse transplantation models. To investigate the mechanism by which CAPE enhanced HSPC homing, we performed these experiments including Q-PCR, western blot, immunohistochemistry and CFU assays after in-vivo HIF-1α activity blockade. RESULTS: CAPE injection significantly increased the survival rate of recipient mice after lethal irradiation and transplantation of a low number of BM MNCs. Using HSPC homing assays, we found that CAPE notably increased donor HSPC homing to recipient BM. The subsequent short-term and long-term engraftment of transplanted HSPCs was also improved by the optimal schedule of CAPE administration. Mechanistically, we found that CAPE upregulated the expression of HIF-1α, vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor 1α (SDF-1α). The HIF-1α inhibitor PX-478 blocked CAPE-enhanced HSPC homing, which supported the idea that HIF-1α is a key target of CAPE. CONCLUSIONS: Our results showed that CAPE administration facilitated HSPC homing and engraftment, and this effect was primarily dependent on HIF-1α activation and upregulation of SDF-1α and VEGF-A expression in the BM niche. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-017-0708-x) contains supplementary material, which is available to authorized users.