Cargando…
An incremental anomaly detection model for virtual machines
Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besid...
Autores principales: | Zhang, Hancui, Chen, Shuyu, Liu, Jun, Zhou, Zhen, Wu, Tianshu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678885/ https://www.ncbi.nlm.nih.gov/pubmed/29117245 http://dx.doi.org/10.1371/journal.pone.0187488 |
Ejemplares similares
-
Lightweight Anomaly Detection Scheme Using Incremental Principal Component Analysis and Support Vector Machine
por: Zamry, Nurfazrina M., et al.
Publicado: (2021) -
Hierarchical Anomaly Detection Model for In-Vehicle Networks Using Machine Learning Algorithms
por: Park, Seunghyun, et al.
Publicado: (2020) -
Network anomaly detection: a machine learning perspective
por: Bhattacharyya, Dhruba Kumar
Publicado: (2013) -
Deep Anomaly Detection for CNC Machine Cutting Tool Using Spindle Current Signals
por: Li, Guang, et al.
Publicado: (2020) -
An integrated classification model for incremental learning
por: Hu, Ji, et al.
Publicado: (2020)