Cargando…
Entity recognition in the biomedical domain using a hybrid approach
BACKGROUND: This article describes a high-recall, high-precision approach for the extraction of biomedical entities from scientific articles. METHOD: The approach uses a two-stage pipeline, combining a dictionary-based entity recognizer with a machine-learning classifier. First, the OGER entity reco...
Autores principales: | Basaldella, Marco, Furrer, Lenz, Tasso, Carlo, Rinaldi, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679148/ https://www.ncbi.nlm.nih.gov/pubmed/29122011 http://dx.doi.org/10.1186/s13326-017-0157-6 |
Ejemplares similares
-
OGER++: hybrid multi-type entity recognition
por: Furrer, Lenz, et al.
Publicado: (2019) -
Learning adaptive representations for entity recognition in the biomedical domain
por: Lauriola, Ivano, et al.
Publicado: (2021) -
Towards reliable named entity recognition in the biomedical domain
por: Giorgi, John M, et al.
Publicado: (2020) -
Parallel sequence tagging for concept recognition
por: Furrer, Lenz, et al.
Publicado: (2022) -
An adaptive annotation approach for biomedical entity and relation recognition
por: Yimam, Seid Muhie, et al.
Publicado: (2016)