Cargando…
ADEPt, a semantically-enriched pipeline for extracting adverse drug events from free-text electronic health records
Adverse drug events (ADEs) are unintended responses to medical treatment. They can greatly affect a patient’s quality of life and present a substantial burden on healthcare. Although Electronic health records (EHRs) document a wealth of information relating to ADEs, they are frequently stored in the...
Autores principales: | Iqbal, Ehtesham, Mallah, Robbie, Rhodes, Daniel, Wu, Honghan, Romero, Alvin, Chang, Nynn, Dzahini, Olubanke, Pandey, Chandra, Broadbent, Matthew, Stewart, Robert, Dobson, Richard J. B., Ibrahim, Zina M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679515/ https://www.ncbi.nlm.nih.gov/pubmed/29121053 http://dx.doi.org/10.1371/journal.pone.0187121 |
Ejemplares similares
-
Identification of Adverse Drug Events from Free Text Electronic Patient Records and Information in a Large Mental Health Case Register
por: Iqbal, Ehtesham, et al.
Publicado: (2015) -
Author Correction: Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records
por: Bean, Daniel M., et al.
Publicado: (2018) -
Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records
por: Bean, Daniel M., et al.
Publicado: (2017) -
The side effect profile of Clozapine in real world data of three large mental health hospitals
por: Iqbal, Ehtesham, et al.
Publicado: (2020) -
Efficient Reuse of Natural Language Processing Models for Phenotype-Mention Identification in Free-text Electronic Medical Records: A Phenotype Embedding Approach
por: Wu, Honghan, et al.
Publicado: (2019)