Cargando…
Maximum entropy methods for extracting the learned features of deep neural networks
New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently re...
Autores principales: | Finnegan, Alex, Song, Jun S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679649/ https://www.ncbi.nlm.nih.gov/pubmed/29084280 http://dx.doi.org/10.1371/journal.pcbi.1005836 |
Ejemplares similares
-
The maximum entropy method
por: Wu, Nailong
Publicado: (1997) -
Maximum entropy models provide functional connectivity estimates in neural networks
por: Lamberti, Martina, et al.
Publicado: (2022) -
Feature and Label Association Based on Granulation Entropy for Deep Neural Networks
por: Bello, Marilyn, et al.
Publicado: (2020) -
Maximum Entropy Exploration in Contextual Bandits with Neural Networks and Energy Based Models
por: Elwood, Adam, et al.
Publicado: (2023) -
Stimulus-dependent Maximum Entropy Models of Neural Population Codes
por: Granot-Atedgi, Einat, et al.
Publicado: (2013)