Cargando…

CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles

Pediatric low-grade gliomas (PLGGs) are commonly associated with BRAF gene fusions that aberrantly activate the mitogen-activated protein kinase (MAPK) signaling pathway. This has led to PLGG clinical trials utilizing RAF- and MAPK pathway-targeted therapeutics. Whole-genome profiling of PLGGs has a...

Descripción completa

Detalles Bibliográficos
Autores principales: Jain, P, Fierst, T M, Han, H J, Smith, T E, Vakil, A, Storm, P B, Resnick, A C, Waanders, A J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680138/
https://www.ncbi.nlm.nih.gov/pubmed/28806393
http://dx.doi.org/10.1038/onc.2017.276
_version_ 1783277700806344704
author Jain, P
Fierst, T M
Han, H J
Smith, T E
Vakil, A
Storm, P B
Resnick, A C
Waanders, A J
author_facet Jain, P
Fierst, T M
Han, H J
Smith, T E
Vakil, A
Storm, P B
Resnick, A C
Waanders, A J
author_sort Jain, P
collection PubMed
description Pediatric low-grade gliomas (PLGGs) are commonly associated with BRAF gene fusions that aberrantly activate the mitogen-activated protein kinase (MAPK) signaling pathway. This has led to PLGG clinical trials utilizing RAF- and MAPK pathway-targeted therapeutics. Whole-genome profiling of PLGGs has also identified rare gene fusions involving another RAF isoform, CRAF/RAF1, in PLGGs and cancers occuring in adults. Whereas BRAF fusions primarily dysregulate MAPK signaling, the CRAF fusions QKI-RAF1 and SRGAP3-RAF1 aberrantly activate both the MAPK and phosphoinositide-3 kinase/mammalian target of rapamycin (PI3K/mTOR) signaling pathways. Although ATP-competitive, first-generation RAF inhibitors (vemurafenib/PLX4720, RAFi) cause paradoxical activation of the MAPK pathway in BRAF-fusion tumors, inhibition can be achieved with ‘paradox breaker’ RAFi, such as PLX8394. Here we report that, unlike BRAF fusions, CRAF fusions are unresponsive to both generations of RAFi, vemurafenib and PLX8394, highlighting a distinct responsiveness of CRAF fusions to clinically relevant RAFi. Whereas PLX8394 decreased BRAF-fusion dimerization, CRAF-fusion dimerization is unaffected primarily because of robust protein–protein interactions mediated by the N-terminal non-kinase fusion partner, such as QKI. The pan-RAF dimer inhibitor, LY3009120, could suppress CRAF-fusion oncogenicity by inhibiting dimer-mediated signaling. In addition, as CRAF fusions activate both the MAPK and PI3K/mTOR signaling pathways, we identify combinatorial inhibition of the MAPK/mTOR pathway as a potential therapeutic strategy for CRAF-fusion-driven tumors. Overall, we define a mechanistic distinction between PLGG-associated BRAF- and CRAF/RAF1 fusions in response to RAFi, highlighting the importance of molecularly classifying PLGG patients for targeted therapy. Furthermore, our study uncovers an important contribution of the non-kinase fusion partner to oncogenesis and potential therapeutic strategies against PLGG-associated CRAF fusions and possibly pan-cancer CRAF fusions.
format Online
Article
Text
id pubmed-5680138
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-56801382017-11-17 CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles Jain, P Fierst, T M Han, H J Smith, T E Vakil, A Storm, P B Resnick, A C Waanders, A J Oncogene Original Article Pediatric low-grade gliomas (PLGGs) are commonly associated with BRAF gene fusions that aberrantly activate the mitogen-activated protein kinase (MAPK) signaling pathway. This has led to PLGG clinical trials utilizing RAF- and MAPK pathway-targeted therapeutics. Whole-genome profiling of PLGGs has also identified rare gene fusions involving another RAF isoform, CRAF/RAF1, in PLGGs and cancers occuring in adults. Whereas BRAF fusions primarily dysregulate MAPK signaling, the CRAF fusions QKI-RAF1 and SRGAP3-RAF1 aberrantly activate both the MAPK and phosphoinositide-3 kinase/mammalian target of rapamycin (PI3K/mTOR) signaling pathways. Although ATP-competitive, first-generation RAF inhibitors (vemurafenib/PLX4720, RAFi) cause paradoxical activation of the MAPK pathway in BRAF-fusion tumors, inhibition can be achieved with ‘paradox breaker’ RAFi, such as PLX8394. Here we report that, unlike BRAF fusions, CRAF fusions are unresponsive to both generations of RAFi, vemurafenib and PLX8394, highlighting a distinct responsiveness of CRAF fusions to clinically relevant RAFi. Whereas PLX8394 decreased BRAF-fusion dimerization, CRAF-fusion dimerization is unaffected primarily because of robust protein–protein interactions mediated by the N-terminal non-kinase fusion partner, such as QKI. The pan-RAF dimer inhibitor, LY3009120, could suppress CRAF-fusion oncogenicity by inhibiting dimer-mediated signaling. In addition, as CRAF fusions activate both the MAPK and PI3K/mTOR signaling pathways, we identify combinatorial inhibition of the MAPK/mTOR pathway as a potential therapeutic strategy for CRAF-fusion-driven tumors. Overall, we define a mechanistic distinction between PLGG-associated BRAF- and CRAF/RAF1 fusions in response to RAFi, highlighting the importance of molecularly classifying PLGG patients for targeted therapy. Furthermore, our study uncovers an important contribution of the non-kinase fusion partner to oncogenesis and potential therapeutic strategies against PLGG-associated CRAF fusions and possibly pan-cancer CRAF fusions. Nature Publishing Group 2017-11-09 2017-08-14 /pmc/articles/PMC5680138/ /pubmed/28806393 http://dx.doi.org/10.1038/onc.2017.276 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/
spellingShingle Original Article
Jain, P
Fierst, T M
Han, H J
Smith, T E
Vakil, A
Storm, P B
Resnick, A C
Waanders, A J
CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles
title CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles
title_full CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles
title_fullStr CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles
title_full_unstemmed CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles
title_short CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles
title_sort craf gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680138/
https://www.ncbi.nlm.nih.gov/pubmed/28806393
http://dx.doi.org/10.1038/onc.2017.276
work_keys_str_mv AT jainp crafgenefusionsinpediatriclowgradegliomasdefineadistinctdrugresponsebasedondimerizationprofiles
AT fiersttm crafgenefusionsinpediatriclowgradegliomasdefineadistinctdrugresponsebasedondimerizationprofiles
AT hanhj crafgenefusionsinpediatriclowgradegliomasdefineadistinctdrugresponsebasedondimerizationprofiles
AT smithte crafgenefusionsinpediatriclowgradegliomasdefineadistinctdrugresponsebasedondimerizationprofiles
AT vakila crafgenefusionsinpediatriclowgradegliomasdefineadistinctdrugresponsebasedondimerizationprofiles
AT stormpb crafgenefusionsinpediatriclowgradegliomasdefineadistinctdrugresponsebasedondimerizationprofiles
AT resnickac crafgenefusionsinpediatriclowgradegliomasdefineadistinctdrugresponsebasedondimerizationprofiles
AT waandersaj crafgenefusionsinpediatriclowgradegliomasdefineadistinctdrugresponsebasedondimerizationprofiles