Cargando…
Deep sequencing and analyses of miRNAs, isomiRs and miRNA induced silencing complex (miRISC)-associated miRNome in primary human chondrocytes
MicroRNAs, a group of small, noncoding RNAs that post-transcriptionally regulate gene expression, play important roles in chondrocyte function and in the development of osteoarthritis. We characterized the dynamic repertoire of the chondrocyte miRNome and miRISC-associated miRNome by deep sequencing...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680238/ https://www.ncbi.nlm.nih.gov/pubmed/29123165 http://dx.doi.org/10.1038/s41598-017-15388-4 |
Sumario: | MicroRNAs, a group of small, noncoding RNAs that post-transcriptionally regulate gene expression, play important roles in chondrocyte function and in the development of osteoarthritis. We characterized the dynamic repertoire of the chondrocyte miRNome and miRISC-associated miRNome by deep sequencing analysis of primary human chondrocytes. IL-1β treatment showed a modest effect on the expression profile of miRNAs in normal and osteoarthritis (OA) chondrocytes. We found a number of miRNAs that showed a wide range of sequence modifications including nucleotide additions and deletions at 5′ and 3′ ends; and nucleotide substitutions. miR-27b-3p showed the highest expression and miR-140-3p showed the highest number of sequence variations. AGO2 RIP-Seq analysis revealed the differential recruitment of a subset of expressed miRNAs and isoforms of miRNAs (isomiRs) to the miRISC in response to IL-1β, including miR-146a-5p, miR-155-5p and miR-27b-3p. Together, these results reveal a complex repertoire of miRNAs and isomiRs in primary human chondrocytes. Here, we also show the changes in miRNA composition of the miRISC in primary human chondrocytes in response to IL-1β treatment. These findings will provide an insight to the miRNA-mediated control of gene expression in the pathogenesis of OA. |
---|