Cargando…
Applications of deep convolutional neural networks to digitized natural history collections
Abstract. Natural history collections contain data that are critical for many scientific endeavors. Recent efforts in mass digitization are generating large datasets from these collections that can provide unprecedented insight. Here, we present examples of how deep convolutional neural networks can...
Autores principales: | Schuettpelz, Eric, Frandsen, Paul B., Dikow, Rebecca B., Brown, Abel, Orli, Sylvia, Peters, Melinda, Metallo, Adam, Funk, Vicki A., Dorr, Laurence J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pensoft Publishers
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680669/ https://www.ncbi.nlm.nih.gov/pubmed/29200929 http://dx.doi.org/10.3897/BDJ.5.e21139 |
Ejemplares similares
-
A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae
por: Mandel, Jennifer R., et al.
Publicado: (2019) -
Genomic and transcriptomic resources for assassin flies including the complete genome sequence of Proctacanthus coquilletti (Insecta: Diptera: Asilidae) and 16 representative transcriptomes
por: Dikow, Rebecca B., et al.
Publicado: (2017) -
Inselect: Automating the Digitization of Natural History Collections
por: Hudson, Lawrence N., et al.
Publicado: (2015) -
Pashto isolated digits recognition using deep convolutional neural network
por: Zada, Bakht, et al.
Publicado: (2020) -
Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images
por: Khosravi, Pegah, et al.
Publicado: (2017)