Cargando…
Intermediate Levels of Network Heterogeneity Provide the Best Evolutionary Outcomes
Complex networks impact the diffusion of ideas and innovations, the formation of opinions, and the evolution of cooperative behavior. In this context, heterogeneous structures have been shown to generate a coordination-like dynamics that drives a population towards a monomorphic state. In contrast,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681591/ https://www.ncbi.nlm.nih.gov/pubmed/29127336 http://dx.doi.org/10.1038/s41598-017-15555-7 |
Sumario: | Complex networks impact the diffusion of ideas and innovations, the formation of opinions, and the evolution of cooperative behavior. In this context, heterogeneous structures have been shown to generate a coordination-like dynamics that drives a population towards a monomorphic state. In contrast, homogeneous networks tend to result in a stable co-existence of multiple traits in the population. These conclusions have been reached through the analysis of networks with either very high or very low levels of degree heterogeneity. In this paper, we use methods from Evolutionary Game Theory to explore how different levels of degree heterogeneity impact the fate of cooperation in structured populations whose individuals face the Prisoner’s Dilemma. Our results suggest that in large networks a minimum level of heterogeneity is necessary for a society to become evolutionary viable. Moreover, there is an optimal range of heterogeneity levels that maximize the resilience of the society facing an increasing number of social dilemmas. Finally, as the level of degree heterogeneity increases, the evolutionary dominance of either cooperators or defectors in a society increasingly depends on the initial state of a few influential individuals. Our findings imply that neither very unequal nor very equal societies offer the best evolutionary outcome. |
---|