Cargando…

Sex-specific strategies of resource allocation in response to competition for light in a dioecious plant

The differential plasticity hypothesis suggests that sexual dimorphism in dioecious plants could evolve in response to sex-specific resource requirements for reproduction (i.e., high carbon requirements for ovules and high nitrogen demands for pollen). When resources become limiting during growth, m...

Descripción completa

Detalles Bibliográficos
Autores principales: Tonnabel, Jeanne, David, Patrice, Pannell, John R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681607/
https://www.ncbi.nlm.nih.gov/pubmed/29043498
http://dx.doi.org/10.1007/s00442-017-3966-5
Descripción
Sumario:The differential plasticity hypothesis suggests that sexual dimorphism in dioecious plants could evolve in response to sex-specific resource requirements for reproduction (i.e., high carbon requirements for ovules and high nitrogen demands for pollen). When resources become limiting during growth, males and females should, therefore, adjust their allocation to resource-harvesting organs differently. To investigate the potential for plants to respond to resource limitation late in life and to test the differential plasticity hypothesis, we grew male and female individuals of the annual wind-pollinated plant Mercurialis annua in a common garden. Late in the growth season, we simulated a change in competition by decreasing plant density in half of the replicates. We measured both allocation to vegetative and reproductive traits and analyzed the relative allocation to reproduction vs. growth. Males and females differentially adjusted their resource allocation in response to varying plant densities, despite the fact that they were reproductively mature. Males maintained the same relative allocation of resource to reproductive vs. vegetative tissues at both densities. In contrast, females reduced vegetative growth proportionally less than seed production at the higher density. Our results highlight the dynamic nature of allocation decisions taken by plants, which respond quickly and in a sexually dimorphic way to changes in their competitive circumstances. The existence of resource ‘currencies’ limiting male and female functions differently have potentially led to the evolution of sex-specific strategies of resource acquisition and deployment, with females conserving resources for vegetative organs to ensure their future carbon-rich reproduction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-017-3966-5) contains supplementary material, which is available to authorized users.