Cargando…

Creation of forest edges has a global impact on forest vertebrates

Forest edges influence more than half the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. We assembled an unmatched global dataset on species responses to fragmenta...

Descripción completa

Detalles Bibliográficos
Autores principales: Pfeifer, M, Lefebvre, V, Peres, CA, Banks-Leite, C, Wearn, OR, Marsh, CJ, Butchart, SHM, Arroyo-Rodríguez, V, Barlow, J, Cerezo, A, Cisneros, L, D’Cruze, N, Faria, D, Hadley, A, Harris, S, Klingbeil, BT, Kormann, U, Lens, L, Medina-Rangel, GF, Morante-Filho, JC, Olivier, P, Peters, SL, Pidgeon, A, Ribeiro, DB, Scherber, C, Schneider-Maunory, L, Struebig, M, Urbina-Cardona, N, Watling, JI, Willig, MR, Wood, EM, Ewers, RM
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681864/
https://www.ncbi.nlm.nih.gov/pubmed/29088701
http://dx.doi.org/10.1038/nature24457
Descripción
Sumario:Forest edges influence more than half the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. We assembled an unmatched global dataset on species responses to fragmentation and developed a new statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1673 vertebrate species. We show that 85% of species’ abundances are affected, either positively or negatively, by forest edges. Forest core species, which were more likely to be listed as threatened by the IUCN, only reached peak abundances at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.