Cargando…

Identification and Expression Analyses of Equine Endogenous Retroviruses in Horses

Endogenous retroviruses (ERVs) have been integrated into vertebrate genomes and have momentously affected host organisms. Horses (Equus caballus) have been domesticated and selected for elite racing ability over centuries. ERVs played an important role in the evolutionary diversification of the hors...

Descripción completa

Detalles Bibliográficos
Autores principales: Gim, Jeong-An, Kim, Heui-Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Molecular and Cellular Biology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682256/
https://www.ncbi.nlm.nih.gov/pubmed/29047258
http://dx.doi.org/10.14348/molcells.2017.0141
Descripción
Sumario:Endogenous retroviruses (ERVs) have been integrated into vertebrate genomes and have momentously affected host organisms. Horses (Equus caballus) have been domesticated and selected for elite racing ability over centuries. ERVs played an important role in the evolutionary diversification of the horse genome. In the present study, we identified six equine ERV families (EqERVs-E1, I1, M2, P1, S1, and Y4), their full-length viral open reading frames (ORFs), and elucidated their phylogenetic relationships. The divergence time of EqERV families assuming an evolutionary rate of 0.2%/Myr indicated that EqERV-S3 (75.4 million years ago; mya) on chromosome 10 is an old EqERV family and EqERV-P5 (1.2 Mya) on chromosome 12 is a young member. During the evolutionary diversification of horses, the EqERV-I family diverged 1.7 Mya to 38.7 Mya. Reverse transcription quantitative real-time PCR (RT-qPCR) amplification of EqERV pol genes showed greater expression in the cerebellum of the Jeju horse than the Thoroughbred horse. These results could contribute further dynamic studies for horse genome in relation to EqERV gene function.