Cargando…
The online measured black carbon aerosol and source orientations in the Nam Co region, Tibet
Equivalent black carbon (eBC) mass concentrations were measured by an aethalometer (AE-31) in the Nam Co, central Tibet from 2010 to 2014. Different from previous filter-sampling studies (Ming et al., J Environ Sci 22(11):1748–1756, 2010; Zhao et al., Environ Sci Pollut Res 20:5827–5838, 2013), the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683056/ https://www.ncbi.nlm.nih.gov/pubmed/28920168 http://dx.doi.org/10.1007/s11356-017-0165-1 |
Sumario: | Equivalent black carbon (eBC) mass concentrations were measured by an aethalometer (AE-31) in the Nam Co, central Tibet from 2010 to 2014. Different from previous filter-sampling studies (Ming et al., J Environ Sci 22(11):1748–1756, 2010; Zhao et al., Environ Sci Pollut Res 20:5827–5838, 2013), the first high-resolution online eBC measurement conducted in central Tibet is reported here, allowing to discuss the diurnal variations as well as seasonal variabilities of eBC. Average daily eBC concentration was 74 ± 50 ng/m(3), reflecting a global background level. Meteorological conditions influenced eBC concentrations largely at seasonal scale, which are higher in February–May but lower in June–January. The highest eBC concentrations (greater than 210 ng/m(3)) were more associated with the W and WSW winds smaller than 6 m/s. The diurnal variations of eBC showed plateaus from 10:00 to 15:00 with seasonal variations, associated with local anthropogenic activities, such as indigenous Tibetan burning animal waste and tourism traffic. The PBLHs showed a co-variance with eBC concentrations, implicating close sources. The aerosol optical depths derived from the MODIS data over the Nam Co Observatory Station (NCOS)-included sub-area (30° N–40° N, 90° E–100° E) showed significant relationship with eBC concentrations. This suggests that nearby or short-distance sources other than long-distance transported pollutants could be important contributors to eBC concentrations at the NCOS, different from the conclusions suggested by previous studies. |
---|